Damping of dynamic forces by materials used in the construction of ballast and ballastless railway tracks. Crushed stone
https://doi.org/10.21780/2223-9731-2019-78-2-114-121
Abstract
Strength properties of mineral materials used in the track operation, which are crushed stone and sand, do not depend on the ambient temperature (up to 500 °C) and humidity, but gradually degrade when its pore space becomes clogged with fines, oil products and plant residues. Polymeric materials used in the construction of railway tracks for damping dynamic loads, when exposed to significant stresses, are gradually destroyed. The main operating conditions that determine the performance of polymer products include the ambient temperature, its humidity, the presence of a chemically aggressive external effect and a stress fields. Cuts or scratches — stress concentrators on polymer products — significantly change the thermal dependence of its mechanical properties. Therefore, hemispherical grooves, cylindrical cuts in the central areas of pads, made to reduce wear in the peripheral areas, lead to a significant narrowing of the temperature range of the effective operation of these products. Granular media have strong non-linear properties, the main causes of which are microcracks, boundaries and areas of contact of the granules a well as physic-mechanical properties of substances that fill the pore space of crushed stone layer. Coefficient of energy absorption in a granular medium is directly proportional to the viscosity of the polymer layer between the granules. Filling the pore space of the crushed stone layer with sand and viscous-plastic medium (polymers, organic binders and materials based on them, solid polyurethane foam, water or oil products) leads to decrease in the strength of crushed stone prism. An increase in the ambient temperature, especially above 30 °C, reduces the elastic properties and structural viscosity of viscousplastic materials that fill the pore space of a crushed stone prism, thereby reducing its strength. But at the same time, the energy absorption coefficient of vibration in a wide frequency range sharply increases and the dynamic loads on the track gauge profile are decreased. Most often, cheap organic-based compositions are used as dynamic load absorbers in the crushed stone layer: synthetic resins, acrylic acid amide polymers, latexes, lignin sulfonates and bitumen. When filling the pore space of crushed stone, an adhesive interaction occurs between the polymer molecules and the surfaces of the granules. Polymer molecules fill not only the pore space, but also penetrate into the contact area of the granules, reduce friction and decrease the angle of internal friction of crushed stone and the adhesion index of the bulk material. However the operation of railways is associated with permanent deformation and destruction of the surface layers of the polymer. Multiple repetition of the deformation process leads to an increase in mechanical hysteresis losses, causing friction and wear of the polymer in contact with the granules. Therefore, one should not expect a long service life when using a polymeric material for hardening the ballast layer.
About the Author
V. M. BEL’KOVRussian Federation
Vladimir M. BEL’KOV, Dr. Sci. (Phys.-Math.), Scientific Consultant, Science and consultancy center (NKTs)
Moscow, 129626
References
1. Bel'kov V. M., Antipov B. V. Fiziko-khimicheskie osnovy ustoychivosti puti [Physic and chemical basis of track sustainability]. Put' i putevoe khozyaystvo [Railway Track and Facilities], 2013, no. 12, pp. 21–24.
2. Bel'kov V. M. Modelirovanie uprugovyazkoplasticheskikh svoystv zemlyanogo polotna. Postanovka zadachi 1 [Modelling of elastoviscoplastic properties of the subgrade. Problem statement 1]. Vestnik VNIIZhT [Vestnik of the Railway Research Institute], 2016, Vol. 75, no. 6, pp. 334–338. DOI: https://doi.org/10.21780/2223-9731-2016-75-6-334-338.
3. Bel'kov V. M. Modelirovanie uprugovyazkoplasticheskikh svoystv zemlyanogo polotna. Postanovka zadachi 2 [Modelling of elastoviscoplastic properties of the subgrade. Problem statement 2]. Vestnik VNIIZhT [Vestnik of the Railway Research Institute], 2017, Vol. 76, no. 1, pp. 61–64. DOI: https://doi.org/10.21780/ 2223-9731-2017-76-1-61-64.
4. Bel'kov V. M. Modelirovanie vibrodempfiruyushchikh svoystv uprugovyazkoplasticheskikh sloev zemlyanogo polotna. Postanovka zadachi 1 [Modelling of vibration-damping properties of elastic-viscoplastic layers of the roadbed. Problem statement 1]. Vestnik VNIIZhT [Vestnik of the Railway Research Institute], 2017, Vol. 76, no. 3, pp. 187–192. DOI: https://doi.org/10.21780/2223-9731-2017-76-3-187-192.
5. Bel'kov V. M. Modelirovanie vibrodempfiruyushchikh svoystv uprugovyazkoplasticheskikh sloev zemlyanogo polotna. Postanovka zadachi 2 [Modelling of vibration-damping properties of elastic-viscoplastic layers of the roadbed. Problem statement 2]. Vestnik VNIIZhT [Vestnik of the Railway Research Institute], 2017, Vol. 76, no. 5, pp. 312–320. DOI: https://doi.org/10.21780/2223-9731-2017-76-5-312-320.
6. Jing G., Lie G., Lin J., Martinez J., Yin C. Aerodynamic characteristics of individual ballast particle by wind tunnel tests. Journal of Engineering Science and Technology Review, 2014, no. 7 (2), pp. 137–142.
7. Jing G., Zhou Y., Lin J., Zhang J. Ballast flying mechanism and sensitivity factors analysis. International Journal on Smart Sensing and Intelligent Systems, 2012, no. 5 (4), pp. 928–939.
8. Theme no. 9. Ballast. Purpose and requirements for the ballast layer. Irkutsk State University of Railways. URL: https://studfiles.net/preview/6283013 (retrieved on 22.03.2018) (in Russ.).
9. Kirillov A. M., Zav'yalov M. A. Sinergeticheskiy podkhod k modelirovaniyu fizicheskogo iznosa inzhenerno-tekhnicheskikh sistem [Synergetic approach to modeling the physical wear of engineering systems]. Vestnik MGSU, 2015, no. 5, pp. 93–102.
10. Luk'yanova A. N. Modelirovanie kontaktnogo vzaimodeystviya detaley. Ucheb. posobie [Modeling contact interaction details. Tutorial]. Samara, Samara State Technical University Publ., 2012, 87 p.
11. Effective sub-rail and sleeper pads made of SYLOMER and SYLODYN materials. LLC Acoustic Materials and Technologies (Kiev). URL: http://www.acoustic.ua/articles/113 (retrieved on 22.03.2018) (in Russ.).
12. Selitskaya N. V., Lashin M. V., Yakovlev D. N. Usilenie ballastnoy prizmy organicheskimi vyazhushchimi i materialami na ikh osnove [Strengthening the ballast prism with organic binders and materials based on them]. Novye zadachi tekhnicheskikh nauk i puti ikh resheniya. Sb. st. Mezhdunar. nauch.-prakt. konf. (Chelyabinsk, 10 dek. 2015 g.) [New problems of technical sciences and their solutions. Coll. of articles of the International scientific and practical conference (Chelyabinsk, December 10, 2015)]. Ufa, AETERNA Publ., 2015, no. 2, pp. 118–121.
13. Polevichenko A. G. Deformatsii zemlyanogo polotna, mery preduprezhdeniya i sposoby likvidatsii [Deformations of the roadbed, preventive measures and methods of elimination]. Khabarovsk, DVGUPS Publ., 1999, 29 p.
14. Kolos A.F., Tursunov Kh.I., Nikolaytist D.S. Study of the strength properties of ballast material clogged with sand dunes. Engineering Bulletin of the Don, 2013, no. 1. URL: http://www.ivdon.ru/ru/magazine/archive/n1y2013/1423 (retrieved on 04.02.2018) (in Russ.).
15. Ivanov P. L. Grunty i osnovaniya gidrotekhnicheskikh sooruzheniy. Ucheb. dlya gidrotekhn. spets. vuzov [Soils and foundations of hydraulic structures. Reference book for special hydraulic engineering universities]. Moscow, Higher School Publ., 1991, 447 p.
16. Kleyn G. K. Stroitel'naya mekhanika sypuchikh tel [Building mechanics of bulk bodies]. Moscow, Stroyizdat Publ., 1977, 256 p.
17. Sokolovskiy V. V. Statika sypuchey sredy. Moscow, Stroyizdat Publ., 1990, 304 p.
18. Yakovlev S. N. Raschet poliuretanovykh detaley, rabotayushchikh na szhatie pri staticheskoy nagruzke [Calculation of polyurethane parts working in compression under static load]. Nauchno-tekhnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta. Mashinostroenie, 2014, no. 1 (190), pp. 137–142.
19. Polymer materials: the influence of operating conditions on the strength of polymers. Plastinfo. URL: https://plastinfo.ru/information/articles/112/ (retrieved on 23.03.2018) (in Russ.).
20. Raupov I. R. Tekhnologiya vnutriplastovoy vodoizolyatsii terrigennykh kollektorov s primeneniem polimernykh sostavov i opticheskogo metoda kontrolya za protsessom. Kand. tekhn. nauk diss. [Technology of in-situ water insulation of terrigenous reservoirs using polymer compositions and optical method of process control. Cand. tech. sci. diss.]. St. Peterburg, 2016, 143 p.
21. Ismagilov T. A. Sovremennye fiziko-khimicheskie tekhnologii povysheniya nefteotdachi trudnoizvlekaemykh zapasov. lektsiya po programme professional'noy perepodgotovki “Geotekhnologii dobychi nefti i gaza” [Modern physical and chemical technologies for enhancing oil recovery of hard-to-recover reserves. Lecture on the professional retraining program “Geotechnologies for oil and gas production”]. Almetyevsk, 2015, 216 p.
22. Sladovskaya O. Yu., Bashkirtseva N. Yu., Kuryashov D. A., Lakhova A. I. Primenenie kolloidnykh sistem dlya uvelicheniya nefteotdachi plastov [The use of colloidal systems for enhanced oil recovery]. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2010, no. 10, pp. 585–591.
23. Ganeeva Z. M. Promyshlennoe vnedrenie sobstvennykh tekhnologiy uvelicheniya nefteotdachi plastov OAO “Tatneft'” na mestorozhdeniyakh Tatarstana [Industrial implementation of inhouse enhanced oil recovery technologies of JSC “TATNEFT” in the fields of Tatarstan]. Neft'. Gaz. Novatsii [Oil. Gas. Novation], 2014, no. 10, pp. 30–33.
24. Telin A. G. Povyshenie effektivnosti vozdeystviya na plast sshitymi polimernymi sistemami za schet optimizatsii ikh fil'tratsionnykh i reologicheskikh parametrov [Improving the effectiveness of the impact on the reservoir cross-linked polymer systems by optimizing their filtration and rheological parameters]. Interval, 2002, no. 12 (47), pp. 8–9.
25. Altunina L. K. Geleobrazuyushchie i neftevytesnyayushchie kompozitsii dlya uvelicheniya nefteotdachi zalezhey vysokovyazkikh neftey [Gelling and oil-displacing compositions for enhanced oil recovery of highly viscous oil deposits]. Neftepromyslovaya khimiya. Materialy VI Vseros.nauch.-prakt. konf. (Moskva, 23–24 iyunya 2011 g.) [Oilfield chemistry. Proc. of the VI-th All-Russian scientific-practical conference (Moscow, June 23–24, 2011)]. Moscow, RGU nefti i gaza im. I. M. Gubkina [Russian State University of Oil and Gas n.a. I. M. Gubkin] Publ., 2011, pp. 34–37.
26. Shuvalov S. A., Ziangirova M. Yu., Bardin M. A. Razrabotka reagenta dlya selektivnoy vodoizolyatsii na osnove nanorazmernogo radiatsionnosshitogo poliakrilamida [Development of a reagent for selective waterproofing based on nanoscale radiation crosslinked polyacrylamide]. Bashkirskiy khimicheskiy zhurnal [Bashkir Chemical Journal], 2012, Vol. 19, no. 4, pp. 148–153.
27. Shuvalov S. A., Vinokurov V. A., Khlebnikov V. N. Primenenie polimernykh reagentov dlya uvelicheniya nefteotdachi plasta i vodoizolyatsii [The use of polymer reagents for enhanced oil recovery and water insulation]. Trudy RGU nefti i gaza im. I. M. Gubkina [Proceedings of the RSU of Oil and Gas n.a. I. M. Gubkin], 2013, no. 4 (273), pp. 98–104.
28. Kondrashev A. O., Rogachev M. K., Kondrashev O. F. Vodoizolyatsionnyy polimernyy sostav dlya nizkopronitsaemykh kollektorov [Water-insulating polymer composition for low-permeable reservoirs]. Neftyanoe khozyaystvo, 2014, no. 4, pp. 63–65.
29. Raupov I. R., Kondrasheva N. K., Burkhanov R. N. Razrabotka polimernogo sostava dlya vnutriplastovoy vodoizolyatsii [Development of polymer composition for intra-layer waterproofing]. Neftegazovyy kompleks: obrazovanie, nauka i proizvodstvo. Materialy Vseros. nauch.-prakt. konf. (Al'met'evsk, 30 marta — 3 apr. 2015 g.) [Oil and gas complex: education, science and production. Materials of the All-Russian scientific-practical conference (Almetyevsk, March 30 – April 3, 2015)]. Almetyevsk, Almetyevsk State Oil Institute Publ., 2015, Part 1, pp. 144–147.
30. Bel'kov V. M. Dempfirovanie dinamicheskikh sil materialami, primenyaemymi pri stroitel'stve ballastnogo i bezballastnogo puti. Polimernye prokladki [Damping of dynamic forces by materials used in the construction of ballast and ballastless tracks. Polymer pads]. Vestnik VNIIZhT [Vestnik of the Railway Research Institute], 2018, Vol. 77, no. 5, pp. 310–320. DOI: https://doi.org/10.21780/2223-9731-2018-77-5-310-320.
31. Kulikov V. A., Sibiryakov E. E. Rasprostranenie sil'nykh voln v neodnorodnykh sypuchikh sredakh [Propagation of strong waves in inhomogeneous granular media]. Dinamika sploshnoy sredy. Akustika neodnorodnykh sred [Continuum dynamics. Acoustics of heterogeneous environments]. Novosibirsk, IGIL SO RAN Publ., 2003, no. 121, pp. 103–110.
32. Sibiryakov E. B. Zavisimost' mezhdu koeffitsientom Puassona i mikrostrukturoy mikroneodnorodnoy sredy [Relationship between the Poisson's ratio and the microstructure of a microinhomogeneous medium]. Fizicheskaya mezomekhanika [Physical mesomechanics], 2004, Vol. 7, no. 1, pp. 63–68.
33. Bykov V. G. Uedinennye sdvigovye volny v zernistoy srede [Solitary shear waves in a granular medium]. Akusticheskiy Zhurnal, 1999, Vol. 45, no. 2, pp. 169–173.
Review
For citations:
BEL’KOV V.M. Damping of dynamic forces by materials used in the construction of ballast and ballastless railway tracks. Crushed stone. RUSSIAN RAILWAY SCIENCE JOURNAL. 2019;78(2):114-121. (In Russ.) https://doi.org/10.21780/2223-9731-2019-78-2-114-121