Application of numerical methods to the analysis of the magnetic field in AC traction machines
https://doi.org/10.21780/2223-9731-2023-82-2-127-134
EDN: https://elibrary.ru/fwcqxe
Abstract
Introduction. This article examines the current approach to the design of rotating electrical machines. An overview is given of existing software packages for modelling electromagnetic and thermal processes using numerical finite element methods, designed to replace concentrated parameter analysis of electrical equivalent circuits. It describes how modern Russian researchers solve a wide range of problems, from studying traction performance, to analysing electromagnetic disturbances, noise and vibration, to modelling and diagnosing faults. The aim of the study is to investigate the features of a modern software package suitable for modelling and visualising the magnetic field in the induction traction motor DTA-1200A of the electric locomotive EP20.
Materials and methods. The study applies a numerical finite element calculation method using an application software package that synthesises a two-dimensional computer model of the traction motor to calculate the magnetic field and formalises the calculation of output parameters based on data from technical literature, test results and reference materials. Results. One of the existing software packages is successfully piloted as a result of the study. The steps involved in the geometric construction of a traction motor cross section, the principles of setting and measuring physical phenomena, and the capabilities of the software are reviewed. The modelling characteristics of asynchronous electric motors are described. The practical application of magnetic field modelling results to estimate magnetic flux, flux linkage and power loss in a traction motor is studied. After synthesis of the computer model and calculations, the results of the finite element computer modelling are correlated with theoretical design and experimental test data.
Discussion and conclusion. The results of the study are expected to be useful to electrical machine designers and researchers involved in computer modelling of induction electric machines. On the basis of the computer model presented and verified, research could be carried out to improve the performance of traction motors, to improve and optimise their design and to create digital twins of electric machines.
About the Authors
A. S. ZuevRussian Federation
Alexander S. Zuev - Postgraduate, Russian University of Transport.
127994, Moscow, 9, bldg. 9, Obraztsova St.
Author ID: 836869
M. D. Gluschenko
Russian Federation
Mikhail D. Glushchenko - Dr. Sci. (Eng.), Associate Professor, Professor, Department of Electric trains and locomotives, Russian University of Transport.
127994, Moscow, 9, bldg. 9, Obraztsova St.
Author ID: 298452
References
1. Gnutov S. K., Raetskaya O. V. An approach to numerical modeling of physical fields in starter electric motors. Journal of Electrotechnics. 2019;(2):46-50. (In Russ.). EDN: https://www.elibrary.ru/zkwkyr.
2. Denisov P. A. Certificate of State Registration of Computer Program No. 2019662303 Russian Federation. Constructing a Boundary Element Mesh for the Boundary Integral Equation Method (pFields: Geometry): No. 2019661086: appl. 10.09.2019: publ. 20.09.2019. 1 p. (In Russ.).
3. Avtaykin I. N., Kvon A. M. Comparative analysis of the efficiency of the use of active materials of radial and axial asynchronous machines of the electric drive of technological installations. Izvestiya vuzov. Food Technology. 2019;(1):70-72 (In Russ.). http://doi.org/10.26297/0579-3009.2019.1.17.
4. Belskiy I. O. Numerical modeling of magnetic field parameters of the asynchronous electric motors with broken bars in machine-building production. Modern technologies. System analysis. Modeling. 2018:57(1):60-70 (In Russ.). https://doi.org/10.26731/1813-9108.2018.1(57).60-70.
5. Belskiy I. O., Lukyanov A. V. Mathematical, numerical and full-scale modeling of magnetic field parameters in the asynchronous electric motors with nonsymmetrical current phases. Systems. Methods. Technologies. 2018;(2):44-53 (In Russ.). https://doi.org/10.18324/2077-5415-2018-2-44-53.
6. Kononenko K. E., Kononenko A. V., Krutskikh S. V., Manukovskiy S. M. Improving the Specific Characteristics of Induction Motors. Electrichestvo. 2020;(9):34-39 (In Russ.). https://doi.org/10.24160/0013-5380-2020-9-34-39.
7. Kazakov Yu. B., Stulov A. V., Nikiforov M. I., Kiselev M. A. Development and research of a traction synchronous electric motor with magnets incorporated in the rotor for an electric vehicle. Journal of Electrotechnics. 2022;(2):89-97. (In Russ.). EDN: https://www.elibrary.ru/vrbtem.
8. Simakov A. V., Ognevskiy A. S. The traction motor operating modes modelling with the finite element metod. In: Innovative projects and technologies in education, industry and transport: Proceedings of scientific conference devoted to the Day of Russian Science, Omsk, 8 February 2019. Omsk: OmGUPS; 2019. p. 196-201. (In Russ.). EDN: https://www.elibrary.ru/uzoskz.
9. Glushchenko M. D., Goryunov I. O. Characteristics of the calculation of electric machine's magnetic field. Elektronika i elektrooborudovanie transporta. 2018;(6):5-8 (In Russ.). EDN: https://www.elibrary.ru/yuiwqh.
10. Sirotkin V. V., Pigalev D. A., Bol'shikh I. V., Chernyaev S. S. Application of specialized software for calculation of magnetic field in the turns of switched reluctance motors stator windings. Modern Transportation Systems and Technologies. 2022;8(4):58-73. (In Russ.). https://doi.org/10.17816/transsyst20228458-73.
11. Volkov S. V., Goryachev O. V., Efromeev A. G., Stepochkin A. O. Calculation of the Parameters of a Mathematical Model of an Electric Hybrid Stepper Motor Based on the Analysis of the Magneto Static Field Pattern. Mekhatronika, avtomatizatsiya, upravlenie. 2019;20(8):482-489. (In Russ.). https://doi.org/10.17587/mau.20.482-489.
12. Ermolaev A. I., Gordeev B. A., Okhulkov S. N., Titov D. Yu. Certificate of State Registration of Computer Program No. 2022669927 Russian Federation. Programme for the investigation of magnetic noise and vibration of an asynchronous drive: No. 2022669399: appl. 21.10.2022: publ. 26.10.2022. 1 p. (In Russ.).
13. Ermolaev A. I., Erofeev V. I., Plekhov A. S., Titov D. Yu. Study of magnetic vibration occurring in induction motor using FEM simulation. Smart Electrical Engineering. 2021;(3):37-56 (In Russ.). https://doi.org/10.46960/2658-6754_2021_3_37.
14. Chirkov D. A., Klyuchnikov A. T., Korotaev A. D., Timashev E. O. Comparison of electromagnetic processes calculation methods on the example of a cylindrical linear electronic motor. PNRPU Bulletin. Electrotechnics, Informational Technologies, Control Systems. 2018;(4):76-91. (In Russ.). EDN: https://www.elibrary.ru/vqadwu.
15. Avdeev A. I. Automation of calculation of magnetic field of asynchronous electric drive in the programme FEMM. In: Information technologies, power engineering and economy (power engineering, electrical engineering and thermal power engineering, mathematical modelling and information technologies in production): Proceedings of XVIII International Scientific and Technical Conference of Students and Postgraduates, Smolensk, 22—23 April 2021: in 3 vol. Smolensk: Universum; 2021. Vol. 1. p. 121-126 (In Russ.). EDN: https://www.elibrary.ru/jxydoe.
16. Zakharov V. I. Parameters, characteristics and design features of the DTA-1200A asynchronous traction engine of the EP20 electric locomotive. Journal of the All-Russian research and development institute of electric locomotives. 2009;(2):55-66 (In Russ.). EDN: https://www.elibrary.ru/kxotud.
17. Molotilov B. V., Mironov L. V., Petrenko A. G. Cold-rolled Electrotechnical Steels: Reference Manual. Moscow: Metallurgiya; 1989. 168 p. (In Russ.).
18. Novikov N. N., Rodionov I. E., Shut'ko V. F. Synchronous engines: Handbook for students of electrical engineering and power engineering. Ekaterinburg: UGTU-UPI; 2005. 36 p. (In Russ.).
Supplementary files
Review
For citations:
Zuev A.S., Gluschenko M.D. Application of numerical methods to the analysis of the magnetic field in AC traction machines. RUSSIAN RAILWAY SCIENCE JOURNAL. 2023;82(2):127-134. (In Russ.) https://doi.org/10.21780/2223-9731-2023-82-2-127-134. EDN: https://elibrary.ru/fwcqxe