Optimal control of asynchronous drive of auxiliary machines of electric rolling stock
https://doi.org/10.21780/2223-9731-2023-82-1-70-79
Abstract
Introduction. The authors considered the problem of increasing the energy efficiency of an asynchronous drive, in particular, auxiliary electric machines of an electric locomotive. The publication continues the topic of optimal control of asynchronous machines from the past articles in No. 5, 2021 and No. 1, 2022 of the Russian Railway Science Journal.
Materials and methods. The calculation of the dynamic characteristics of an asynchronous drive used the SimInTech software of 3V Service, a Russian company, designed to simulate various applied problems. The SimInTech software package was used in the development of a mathematical model of the proposed system for optimal vector control of an asynchronous drive.
Results. The authors have found that the developed system of optimal control enables to reduce the current consumed by the asynchronous drive. These simulation modeling results confirmed that the adopted circuit solutions are correct.
Discussion and conclusion. The proposed system of optimal control of electric locomotive auxiliary machines is designed to improve the energy efficiency of the drive with a new algorithm for selecting the optimal value of the rotor flux linkage by reducing the current consumed by the drive. This vector control structure could be successfully implemented on the basis of modern microcontrollers.
Keywords
About the Authors
Yu. M. KulinichRussian Federation
Yuriy M. Kulinich, Dr. Sci. (Eng.), Professor, Railway Transport Department
Author ID: 360696
680021, Khabarovsk, 47, Serysheva St.
S. A. Shukharev
Russian Federation
Sergey A. Shukharev, Cand. Sci. (Eng.) , Associate Professor, Railway Transport Department
Author ID: 889967
680021, Khabarovsk, 47, Serysheva St.
V. K. Dukhovnikov
Russian Federation
Vyacheslav K. Dukhovnikov, Cand. Sci. (Eng.) , Director of the Primorsky Institute of Railway Transport, the Ussuriysk Branch of the Far Eastern State Transport University
Author ID: 616256
692522, Primorskiy Krai, Ussuriysk, 166, Pushkina St.
D. A. Starodubtsev
Russian Federation
Dmitriy A. Starodubtsev, Engineer, Railway Transport Department
680021, Khabarovsk, 47, Serysheva St.
References
1. Samoseiko V. F., Guskov V. O. Optimal control of an asynchronous motor according to the criterion of energy losses. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2020; 12(4):775 788. (In Russ.). https://doi.org/10.21821/230951802020124775788.
2. Izosimov D. B., Makarov L. N. Patent No. 2402147 Russian Federation, MPK H02P 21/08, H02P 27/04. Method of optimum vector control of asynchronous motor: No. 2009133125/07: appl. 04.09.2009: publ. 20.10.2010. 16 p. (In Russ.).
3. Mishchenko V. A., Mishchenko N. I., Mishchenko A. V. Patent No. 2132110 Russian Federation, MPK Н02Р 21/00. Method for optimal vector control of induction electric motor and electric drive which implements said method: No. 98105552/09:appl. 25.03.1998: publ. 20.06.1999. 35 p. (In Russ.).
4. Usol'tsev A. A. Chastotnoe upravlenie asinkhronnymi dvigatelyami: ucheb. posobie [Frequency control of asynchronous motors: Textbook]. St. Petersburg: SPbGU ITMO; 2006. 94 p. (In Russ.).
5. Kulinich Yu. M., Shukharev S. A., Dukhovnikov V. K., Gulyaev A. V. Modeling vector control of the asynchronous drive of electric rolling stock auxiliary machines. Russian Railway Science Journal. 2022; 81(1):2330. (In Russ.). https://doi.org/10.21780/2223973120228112330.
6. Kalachev Yu. N. SimInTech: modelirovanie v elektroprivode [SimInTech: simulation in the electric drive]. Moscow: DMK Press; 2019. 98 p. (In Russ.).
7. Romanova V. V., Khromov S. V., Suslov K. V. Analysis of influencing factors affecting the operational reliability of lowvoltage asynchronous electric motors. Power engineering: research, equipment, technology. 2021;23(3):8089. (In Russ.). https://doi.org/10.30724/1998990320212338089.
8. German Galkin S. G., Kartashov B. A., Litvinov S. N. Model'noe proekti rovanie elektromekhanicheskikh mekhatronnykh modulei dvizheniya v srede SimInTech [Model design of electromechanical mechanisms of me chatronic motion in the SimInTech environment]. Moscow: DMK Press; 2021. 494 p. (In Russ.).
9. Bellan D. Clarke Transformation Solution of Asymmetrical Tran sients in Three Phase Circuits. Energies. 2020;13(19):5231. https://doi.org/10.3390/en13195231.
10. Pradeep J., Devanathan R. Adoption of Park’s Transformation for Inverter Fed Drive. International Journal of Power Electronics and Drive System. 2015;5(3):366 373. http://doi.org/10.11591/ijpeds.v5.i3.pp366373.
11. Terekhin V. B. Modelirovanie system elecktroprivoda v Simulink (Matlab 7.0.1): ucheb. posobie [Modeling of electric drive systems in Simulink (Matlab 7.0.1): Tutorial]. Tomsk: Publishing house of Tomsk Polytechnic University; 2008. 320 p. (In Russ.).
12. Savos'kin A. N. (ed.). Avtomatizatsiya elektropodvizhnogo sostava: ucheb. dlya vuzov po spets. zh.d. transporta [Electric rolling stock automation: Textbook for railway universities]. Moscow: Transport; 1990. 312 p. (In Russ.).
13. Kulinich Yu. M., Shukharev S. A., Gulyaev A. V. Increasing the energy efficiency of auxiliary machines of AC electric locomotive. Russian Railway Science Journal. 2021;80(5):276 284. (In Russ.). https://doi.org/10.21780/222397312021805276284.
14. Elektrovoz 2ES5K (3ES5K) magistral'nyy. Rukovodstvo po ekspluatatsii. Kniga 3. [Electric locomotive 2ES5K (3ES5K) mainline. Manual. Book 3]. Novocherkassk; 2004. 31 p. (In Russ.).
Review
For citations:
Kulinich Yu.M., Shukharev S.A., Dukhovnikov V.K., Starodubtsev D.A. Optimal control of asynchronous drive of auxiliary machines of electric rolling stock. RUSSIAN RAILWAY SCIENCE JOURNAL. 2023;82(1):70-79. (In Russ.) https://doi.org/10.21780/2223-9731-2023-82-1-70-79