Preview

RUSSIAN RAILWAY SCIENCE JOURNAL

Advanced search

Passenger carriages heat insulation tool

https://doi.org/10.21780/2223-9731-2023-82-3-189-197

EDN: https://elibrary.ru/ryhcqe

Abstract

Introduction. This is a description of a technology for assessing the quality of thermal insulation of passenger carriages bodies using the portable tool developed. The research focuses on  the thermal insulation characteristics of the walls  of passenger carriages bodies. Heat insulation is assessed by the reduced heat transfer coefficient which  increases during the service life driving up the costs of heating and air-conditioning the car interior. The thermal camera helps create a heat enginering data sheet of the car with  photos of the body parts with  poor thermal insulation. However, the overhaul of the car requires pinpointing these places by measuring locally the specific thermal resistance of the body walls. The research is intended to develop a method for determining the specific  thermal resistance of the walls of passenger carriages bodies in minimal time  using a portable tool.

Materials and methods. The research methods are  a combination of a physical  experiment on  a section of the wall of a passenger carriage body and on a model of such wall using the developed tool, as well as a digital experiment on their 3D-models. In particular, the tool calibration involved a finite element analysis  of an unsteady thermal process in a digital model of the tool and a 3D-model of the passenger carriage body using SolidWorks Simulation software.

Results. The authors prove that the portable tool can determine the local specific  heat resistance in a passenger carriage body wall in minimal time  of 40 minutes.

Discussion and conclusion. The  portable passenger carriage heat insulation tool can  be  used for  input and output control of thermal insulation of a passenger carriage during a major overhaul.

About the Authors

A. N. Balalaev
Samara State Transport University
Russian Federation

Anatoly N. Balalaev - Dr. Sci. (Eng.), Professor, Department of Wagons, Samara State Transport University.

443066, Samara, 2v, Freedom St.

Author ID: 267860



M. A. Parenyuk
Samara State Transport University
Russian Federation

Maria A. Parenyuk - Cand.  Sci.  (Eng.),   Associate Professor, Department  of  Wagons, Samara State Transport University.

443066, Samara, 2v, Freedom St.

Author ID: 404616



References

1. Leventhal L.Ya., Kostin A.V. Energy of refrigerated and passenger cars: Training manual. Moscow, MIIT [Russian university of transport (MIIT)]; 1998. 90 p. (In Russ.).

2. Kolesnikov V.I., Aleksenko M.V. Monitoring of technical condition of isothermal rolling stock enclosing structures. Vestnik Rostovskogo gosudarstvennogo universiteta putey soobshcheniya. 2007;(1):27-33. (In Russ.). EDN: https://elibrary.ru/nxqsbd.

3. Seleznev A.V., Voron O.A. Application of thermal imaging control of railcar enclosing structures. Trudy Rostovskogo gosudarstvennogo universiteta putej soobshcheniya. 2013;(2):113-116 (In Russ.) EDN: https://elibrary.ru/rvqihz.

4. Samoshkin S. L., Meyster A. O., Yukhnevskiy M. A. Methodical issues of determination of the average heat transfer coefficient of the passenger car body. Russian Railway Science Journal. 2019;78(6):344-350. (In Russ.). http://doi.org/10.21780/2223-9731-2019-78-6-344-350.

5. Boronenko Yu.P., Abdullaev B.A. Experimental studies of new structural solutions for fencing refrigerated car bodies and containers. Proceedings of Petersburg Transport University. 2020;17(4):498-513. (In Russ.). https://doi.org/10.20295/1815-588x-2020-4-498-513.

6. Naumenko S.N., Teymurazov N.S., Golubin A.A. Accuracy of determining the heat transfer coefficient. In: Semechkin A.E., ed. Railway transport at the current stage: problems and ways to solve them: a collection of articles by young scientists and graduate students. Moscow: Intext; 2008. p. 76–79 (In Russ.) EDN: https://elibrary.ru/tawhdn.

7. Golubin A. A., Belova N. V., Naumenko S. N. Effect of measurement errors in determining the heat transfer coefficient of the enclosing structures of an isothermal car. Russian Railway Science Journal. 2019;78(2):100-104. (In Russ.) https://doi.org/10.21780/2223-9731-2019-78-2-100-104.

8. Davydov D.O. Calculation method for the overall heat-transfer coefficient of a technical transport superstructure for perishables in traffic. Russian Railway Science Journal. 2019;78(4):249-256. (In Russ.) https://doi.org/10.21780/2223-9731-2019-78-4-249-256.

9. Teymurazov N.S., Naumenko S.N. Accelerated methods of evaluating heat transfer coefficient of isothermal rolling stock carbody. Russian Railway Science Journal. 2009;(5):18-21. (In Russ.). EDN: https://elibrary.ru/kwpryl.

10. Naumenko S.N. Energy saving during heat engineering tests of specialized vehicles. Energy saving and water treatment. 2008;(4):45-47. (In Russ.). EDN: https://elibrary.ru/kbdofl.

11. Balalaev A.N., Parenyuk M.A. Virtual test bench for the determination of the thermal properties of vacuum insulation panels. Russian Railway Science Journal. 2023;82(2):99-108. (In Russ.). https:// doi.org/10.21780/2223-9731-2023-82-2-99-108.

12. Balalaev A.N., Parenyuk M.A. Patent No. 2771997 Russian Federation, MPK G01N 25/18. Method for measuring specific thermal resistance and device for its implementation: No. 2021137171: appl. 15.12.2021, publ. 16.05.2022. 16 p. (In Russ.).


Review

For citations:


Balalaev A.N., Parenyuk M.A. Passenger carriages heat insulation tool. RUSSIAN RAILWAY SCIENCE JOURNAL. 2023;82(3):189-197. (In Russ.) https://doi.org/10.21780/2223-9731-2023-82-3-189-197. EDN: https://elibrary.ru/ryhcqe

Views: 335


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-9731 (Print)
ISSN 2713-2560 (Online)