Preview

RUSSIAN RAILWAY SCIENCE JOURNAL

Advanced search

Adjusted computer model of electromagnetic processes of an auxiliary asynchronous motor with an autonomous voltage inverter for an electric locomotive

https://doi.org/10.21780/2223-9731-2023-82-3-212-223

EDN: https://elibrary.ru/yrfuya

Abstract

Introduction. The author examines the problem of improving the accuracy of computer simulation of electromagnetic processes of an auxiliary asynchronous motor of an electric locomotive with the frequency adjusted by an autonomous voltage inverter. The calculations of instantaneous motor phase currents were improved. The research justified the proposed adjustments to the computer model of a three-phase asynchronous motor to consider the skin effect in the stator and rotor windings, and the effect of the magnetic circuit saturation from leakage fluxes on the leakage inductance of the phases and, thereby, on the instantaneous phase currents. The model is necessary to enhance the reliability of the auxiliary electric drive of an electric locomotive through the correct selection of semiconductor switches for the electric motor inverter. Materials and methods. The researcher chose computer simulation using OrCAD as our research method, and the input data include experimental instantaneous phase voltages of the auxiliary asynchronous motor.

Results. The article presents the results of adjusted computer simulations of instantaneous variables for steady-state engine operation and compares them with experimental data.

Discussion and conclusion. The author compared the experimental and calculated data (phase current, torque, rotation speed of the auxiliary asynchronous motor of an electric locomotive) and substantiated the adjusted computer model to reduce errors in the calculation of electromagnetic processes of the electric motor. The adjusted computer model improves the accuracy of calculating the instantaneous phase currents of the motor. The calculations were performed for the steady-state operation of an asynchronous motor of the AZhV250M2RUHL2 type. The results show that the skin effect has the greatest influence on the leakage inductance of the stator winding.

About the Author

M. Yu. Pustovetov
RIF Shipyard
Russian Federation

Mikhail Yu. Pustovetov - Cand. Sci. (Eng.), Associate Professor, Electrical Design Engineer, RIF Shipyard.

344019, Rostov-on-Don, 93, 13th Line St.

Author ID: 416793



References

1. Kopylov I. P. Mathematical simulation of electrical machines. 3rd ed., revision and additions. Moscow: Vysshaya Shkola; 2001. 327 p. (In Russ.).

2. Bocharov V. I., Zaharov V. I., Kolomeytsev L. F., et al. Electric tractive motors of electric locomotives. Novocherkassk: Agentstvo Nautilus; 1998. 672 p. (In Russ.).

3. Khomenko B. I., Kolpakhch'yan G. I., Pekhotskiy I. V. Auxiliary transistor converters for advanced electric rolling stock. Elektrovozostroenie. 2003;45:184-191. (In Russ.).

4. Soltus K. P., Sinyavskiy I. V., Turulev V. M. Patent No. 2332777 Russian Federation, MPK H02M 9/04. Locomotive converter of auxiliaries: No: 2007111426/09: appl. 28.03.2007: publ. 27.08.2008. 6 p. (In Russ.).

5. Tishkin A. A., Kurganov A. A. Development of a frequency converter for powering asynchronous electric motors of auxiliary machines of AC electric locomotives. In: Zheleznikova O. E., ed. Problems and prospects for the development of domestic lighting and electrical engineering and energy: Proceedings of the XIII All-Russian Scientific and Technical Conference with International Participation in IV All-Russian Lighting Engineering Forum with International Participation, 15—16March 2017, Saransk. Saransk: V. S. Afanasev; 2017. p. 593-597 (In Russ.)]

6. Pekhotskiy I. V., Kolpakhch'yan G. I., Kurochka A. N., Zhukov M. V. Converter for a variable auxiliary electric drive of an AC electric locomotive EP200. Elektrovozostroenie. 2002;44:249-256. (In Russ.).

7. Pustovetov M. Yu. Simulation of a double-circuit subordinated coordinate regulation system of the active power factor corrector for the electric locomotive auxiliary electric drive. Russian Railway Science Journal. 2022;81(2):125-133. (In Russ.). https://doi.org/10.21780/2223-9731-2022-81-2-125-133.

8. Sokolovskiy G. G. Alternating current electric drives with frequency control. Moscow: Academy; 2006. 264 p. (In Russ.). EDN: https://elibrary.ru/qmjaex.

9. Pustovetov M. Yu., Soltus K. P., Sinyavskiy I. V. Computer modelling of induction motors and transformators. Examples of interaction with power electronic converters. Saarbrucken: LAP LAMBERT; 2013. 209 p. (In Russ.). EDN: https://elibrary.ru/rndddp.

10. Pustovetov M. Induction Electrical Machine Simulation at Three-Phase Stator Reference Frame: Approach and Results. In: Applied Electromechanical Devices and Machines for Electric Mobility Solutions. London: IntechOpen; 2020. p. 63-78. https://doi.org/10.5772/intechopen.88906.

11. Pekhotskiy I. V., Pustovetov M. Yu., Kolpakhch'yan P. G., Pustovetova S. Yu. Simulating processes in an asynchronous motor with a variable output voltage of the inverter. Elektrovozostroenie. 2002;44:184-193. In Russ.).

12. Sher H.A., Addoweesh K. E., Khalid Z., Khan Y. Theoretical and experimental analysis of inverter fed induction motor system under DC link capacitor Failure. Journal of King Saud University — Engineering Sciences. 2017;29(2):103-111. http://doi.org/10.1016/j.jksues.2015.06.001.

13. Sudharshana K. R., Ramachandran A., Muralidhara V., Srinivasan R. Simulation and Experimental Validation of Common Mode Voltage in Induction Motor driven by Inverter using Arduino Microcontroller. In: Lecture Notes in Engineering and Computer Science: Procee dings of The World Congress on Engineering, WCE 2017, 5—7 July 2017, London, U.K. [S. l.]; 2017. p. 295-300.

14. Bakhvalov Yu.A., Buzalo G. A., Zarif'yan A. A., et al. Dynamic processes in the asynchronous power actuator of mainline electric locomotives. Moscow: Marshrut; 2006. 374 p. (In Russ.)

15. Tal'ya I. I., Targonskiy I. L., Lozanovskiy A. L. Calculation of the characteristics of an asynchronous electric motor at non-sinusoidal voltage. Elektrovozostroenie. 1994;34:66-76. (In Russ.).

16. Tal'ya I. I., Morozova O. I., Lozanovskiy A. L., Targonskiy I. L Electromagnetic moment of an asynchronous electric motor at non-sinusoidal voltage. Elektrovozostroenie. 1995;35:106-115. (In Russ.).

17. Tal'ya I. I., Pustovetov M. Yu. Pulsation of the electromagnetic torque of an asynchronous tractive motor in starting mode. Bulletin of Higher Educational Institutions. Electromechanics. 1998;(4):34-37. (In Russ.).

18. Lammeraner J., Shtafl M. Whirling current. Moscow, Leningrad: Energia; 1967. 207 p. (In Russ.).

19. Keown J. OrCAD PSpice and Circuit Analysis. Moscow: DMK Press; 2010. 628 p. (In Russ.).

20. Razevig V. D. OrCAD design system 9.2. Moscow: Solon-R; 2001. 519 p. (In Russ.).

21. Goolak S., Tkachenko V., St'astniak P., Sapronova S., Liubarskyi B. Analysis of Control Methods for the Traction Drive of an Alternating Current Electric Locomotive. Symmetry. 2022;14(1):150. https://doi.org/10.3390/sym14010150.

22. Chernykh I. V. Simulation of electrical devices in MATLAB, SimPowerSystems and Simulink. Moscow: DMK Press; St. Petersburg: Piter; 2008. 288 p. (In Russ.). EDN: https://elibrary.ru/razcgt.

23. Sipaylov G. A., Loos A. V. Mathematical simulation of electrical machines (ABM): textbook for university students. Moscow: Vysshaya Shkola; 1980. 176 p. (In Russ.).

24. Pustovetov M. An Inductive Coil Simulation. International Journal of Power Systems. 2021;6:90-93.

25. Pustovetov M. Modification of a computer model of a 3-phase asynchronous motor to take into account magnetic saturation by leakage fluxes. In: International Scientific and Practical Conference “Science. Education. Culture”: 32nd Anniv. of the Comrat State University: Coll. of articles. Vol. 1. Comrat, Moldova: A&V Poligraf; 2023. p. 496-499. (In Russ.).

26. Zirka S. E., Moroz Yu. I., Arturi C. M. Accounting for the Influence of the Tank Walls in the Zero-Sequence Topological Model of a Three-Phase, Three-Limb Transformer. IEEE Transactions on Power Delivery. 2014;29(5):2172-2179. https://doi.org/10.1109/TP-WRD.2014.2307117.

27. Wilson P. R., Wilcock R. Frequency Dependent Model of Leakage Inductance for Magnetic Components. Advanced Electromagnetics. 2012;1(3):99-106. https://doi.org/10.7716/aem.v1i3.70.

28. Maddi Z., Aouzellag D. Dynamic Modelling of Induction Motor Squirrel Cage for Different Shapes of Rotor Deep Bars with Estimation of the Skin Effect. Progress in Electromagnetics Research. 2017;59:147-160. http://doi.org/10.2528/PIERM17060508.

29. Maksimkina J. The Research of the Processes of the Squirrelcage Induction Motor's Direct Start-up in the Setting of the Rotor's Variable Parameters. Power and Electrical Engineering. 2012;30:53-58.

30. Kazakov Yu. B., Shvetsov N. K. Calculating analysis of steel losses in induction motors fed by frequency converters with non-sinusoidal output voltage. Vestnik IGEU. 2015;(5):42-46. (In Russ.). https://doi.org/10.17588/2072-2672.2015.5.042-046.

31. Pfützner H., Shilyashki G., Huber E. Calculated versus measured iron losses and instantaneous magnetization power functions of electrical steel. Electrical Engineering. 2022;104:2449-2455. https://doi.org/10.1007/s00202-021-01474-4.

32. Rens J., Vandenbossche L., Dorez O. Iron Loss Modelling of Electrical Traction Motors for Improved Prediction of Higher Harmonic Losses. World Electric Vehicle Journal. 2020;11(1):24. https://doi.org/10.3390/wevj11010024.

33. Torrent M., Andrada P., Blanqué B., Martinez E., Perat J. I., Sanchez J. A. Method for Estimating Core Losses in Switched Reluctance Motors. European Transactions on Electrical Power. 2011;21(1):757-771. https://doi.org/10.1002/etep.475.

34. Novotny D. W., Nasar S. A., Jeftenic B., Maly D. Frequency Dependence of Time Harmonic Losses in Induction Machines. In: Novotny D.W., Nasar S.A., eds. High frequency losses in induction motors. Part II: final report. Cleveland, OH, USA: NASA Lewis Res. Center; 1991. p. 124-129. https://ntrs.nasa.gov/api/citations/19910015251/downloads/19910015251.pdf (accessed: 15.04.2023).


Review

For citations:


Pustovetov M.Yu. Adjusted computer model of electromagnetic processes of an auxiliary asynchronous motor with an autonomous voltage inverter for an electric locomotive. RUSSIAN RAILWAY SCIENCE JOURNAL. 2023;82(3):212-223. (In Russ.) https://doi.org/10.21780/2223-9731-2023-82-3-212-223. EDN: https://elibrary.ru/yrfuya

Views: 400


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-9731 (Print)
ISSN 2713-2560 (Online)