Analysis of kinematic and energy parameters of electric locomotive wheel–rail adhesion
https://doi.org/10.21780/2223-9731-2023-82-4-285-296
EDN: https://elibrary.ru/yjekzw
Abstract
Introduction. Electric locomotive wheel–rail adhesion is determined by various parameters (kinematic and energetic) that affect the mass and speed of the train, energy consumption, etc. Goods trains of increased weight and length considerably increase the urgency of the problem of electric locomotive wheel–rail adhesion, especially when using powerful electric traction motors, including commutatorless ones. Making reasonable decisions to increase the mass and speed of trains, reduce energy consumption for traction and generally reduce operating costs requires a clear understanding of the basic regularities of the processes in electric locomotive wheel–rail adhesion zones and their parameters.
Materials and methods. The paper uses a system approach, methods of mathematical analysis and energy balance to consider the main regularities of processes in the electric locomotive wheel–rail adhesion zone, their kinematic and energy parameters. Consideration of these processes takes some assumptions: diameters of electric locomotive wheels and pressure of all wheels on rails at any moment of time and at each point of the track is the same, oscillations of wheel pairs are absent, etc. These assumptions do not significantly affect the final results but greatly simplify the derivation of the necessary analytical expressions.
Results. The researcher obtained numerical values of the electric locomotive wheel–rail adhesion parameters, which agree with the experimental data.
Discussion and conclusion. The author proposed the principles of analysis and a system of logically justified and interrelated kinematic and energy parameters of electric locomotive wheel–rail adhesion, identified the main regularities of changes in these parameters. The research results can be used to make science based decisions on the practical application of the electric locomotive wheel–rail adhesion.
Keywords
About the Author
A. A. BaklanovRussian Federation
Alexander A. BAKLANOV, Cand. Sci. (Eng.), Associate Professor, Department of the Rolling Stock of Electric Railway,
35, Marx Avе, Omsk, 644046.
Author ID: 267488.
References
1. Минов Д.К. Повышение тяговых свойств электровозов и тепловозов с электрической передачей. М.: Транспорт, 1965. 267 с. [Minov D.K. Improving the traction properties of electric locomotives and diesel locomotives with electric transmission. Moscow: Transport Publ.; 1965. 267 p. (In Russ.)].
2. Лисицын А.Л., Мугинштейн Л.А. Нестационарные режимы тяги. М.: Интекст, 2003. 343 с. [Lisitsyn A.L., Muginshtein L.A. Unsteady traction modes. Moscow: Intext Publ.; 2003. 343 p. (In Russ.)]. EDN: https://www.elibrary.ru/qnqudb.
3. Меншутин Н.Н. Исследование скольжения колесной пары электровоза при реализации силы тяги в эксплуатационных условиях // Труды ЦНИИ МПС. 1960. Вып. 188. С. 113–132 [Menshutin N.N. Study of the sliding of an electric locomotive wheel pair when implementing traction force under operating conditions. Trudy TSNII MPS. 1960;(188):113-132. (In Russ.)].
4. Лисунов В.Н. Использование сил взаимодействия движущего колеса с рельсом в режимах тяги и электрического торможения. Омск: Омский гос. ун-т путей сообщения, 2003. 160 с. [Lisunov V. N. The use of forces of interaction of the driving wheel with the rail in the modes of traction and electric braking mode. Omsk: Omskiy gos. un-t putey soobshcheniya; 2003. 160 p. (In Russ.)]. EDN: https://www.elibrary.ru/rueqzh.
5. Коган А.Я. Динамика пути и его взаимодействие с подвижным составом. М.: ИПП «Куна», 2023. 280 с. [Kogan A. Ja. Railway track dynamics and its interaction with rolling stock. Moscow: IPP “Kuna” Publ.; 2023. 280 p. (In Russ.)]. EDN: https://www.elibrary.ru/mdkaov.
6. Исаев И.П., Лужнов Ю.М. Проблемы сцепления колес локомотива с рельсами. М.: Машиностроение, 1985. 238 с. [Isaev I.P., Luzhnov Yu.M. Problems of adhesion of locomotive wheels with rails. Moscow: Mashinostroyeniye Publ.; 1985. 238 p. (In Russ.)].
7. Модель взаимодействия колеса и рельса с учетом дискретного строения металлов контактирующих тел / Г. П. Бурчак [и др.] // Вестник машиностроения. 2019. №2. С. 21–28 [Burchak G.P., Vasil’ev A.P., Lyapushkin N.N., Savos’kin A.N. A model of a wheel–rail interaction, taking into account the discrete structure of metals in contacting bodies. Vestnik mashinostroeniya. 2019;(2):21-28. (In Russ.)]. EDN: https://www.elibrary.ru/zaiavv.
8. Лужнов Ю.М. Сцепление колес с рельсами (природа и закономерности). М.: Интекст, 2003. 144 с. [Luzhnov Yu.M. Coupling of wheels with rails (nature and patterns). Moscow: Intext Publ.; 2003. 144 p. (In Russ.)]. EDN: https://www.elibrary.ru/smtutb.
9. Марков Д.П. Трибология и ее применение на железнодорожном транспорте. М.: Интекст, 2007. 408 с. [Markov D.P. Tribology and its application in railway transport. Moscow: Intext Publ.; 2007. 408 p. (In Russ.)]. EDN: https://www.elibrary.ru/qnuvwr.
10. Самме Г.В. Фрикционное взаимодействие колесных пар локомотива с рельсами. Теория и практика сцепления локомотива. М.: Учебно-методический центр по образованию на железнодорожном транспорте, 2014. 104 с. [Samme G.V. Frictional interaction of locomotive wheel pairs with rails. Theory and practice of locomotive adhesion. Moscow: Training and Methodological Center for Education in Railway Transport; 2014. 104 p. (In Russ.)]. EDN: https://www.elibrary.ru/vetocf.
11. Трение, износ, смазка (трибология и триботехника) / А.В. Чичинадзе [и др.]. М.: Машиностроение, 2003. 576 с. [Chichinadze A.V., Berliner E.M., Braun E.D., Bushe N.A., Buyanovskiy I.A., Gekker F.R., et al. Friction, wear, lubrication (tribology and tribotechnics). Moscow: Mashinostroyeniye Publ.; 2003. 576 p. (In Russ.)]. EDN: https://www.elibrary.ru/fqsxnk.
12. Logston C. F. Jr., Itami G. S. Locomotive friction-creep studies. Journal of Engineering for Industry. 1980;102(3):275-281. https://doi.org/10.1115/1.3183865.
13. Polach O. Creep forces in simulations of traction vehicle running on adhesion limit. Wear. 2005;258(7-8):992-1000. https://doi.org/10.1016/j.wear.2004.03.046.
14. Бакланов А.А. Энергетический баланс движения для решения задач снижения расхода электроэнергии на тягу поездов // Транспорт: наука, техника, управление. 2005. №6. С. 32–35 [Baklanov A.A. Energy balance of motion for reducing energy consumption for train traction of trains. Transport: science, equipment, management. 2005;(6):32-35. (In Russ.)].
15. Бакланов А.А. Анализ энергетической схемы и КПД электровоза // Мир транспорта. 2011. Т. 9, №3(36). С. 20–25 [Baklanov A.A. Analysis of energy circuit and efficiency of an electric locomotive. World of Transport and Transportation. 2011;9(3):20-25. (In Russ.)]. EDN: https://www.elibrary.ru/nxmxoj.
16. Савоськин А.Н., Шилин Н.Д. Анализ управления скольжением колесных пар грузового электровоза с асинхронными тяговыми двигателями // Вестник Научно-исследовательского института железнодорожного транспорта (Вестник ВНИИЖТ). 2022. Т. 81, № 3. С. 230–239 [Savos’kin A.N., Shilin N.D. Analysis of wheel pairs slip control of electric freight locomotive with asynchronous traction motors. Russian Railway Science Journal. 2022;81(3):230-239. (In Russ.)]. https://doi.org/10.21780/2223-9731-2022-81-3-230-239.
Review
For citations:
Baklanov A.A. Analysis of kinematic and energy parameters of electric locomotive wheel–rail adhesion. RUSSIAN RAILWAY SCIENCE JOURNAL. 2023;82(4):285-296. (In Russ.) https://doi.org/10.21780/2223-9731-2023-82-4-285-296. EDN: https://elibrary.ru/yjekzw