Peculiarities of metal work in the defect formation zone of a monoblock crossing
https://doi.org/10.21780/2223-9731-2023-82-4-359-368
EDN: https://elibrary.ru/wsnqvg
Abstract
Introduction. The paper analyses the causes of appearance and development of defects of the solid block with wing rails and welded rail ends (monoblock crossing) operating under heavy and intensive traffic conditions. Failure of such crossings is caused by crack initiation and development processes, as well as by metal pitting on the tread surface. One of the effective methods to increase the life of crossings is to harden their tread surface with blast wave energy.
Materials and methods. The metal microstructure of the prototype crossings was investigated using metallographic equipment based on Zeiss Axiovert 25 microscope with Thixomet Pro software. Chemical etching of the surface of the samples used a reagent of 4% nitric acid solution in distilled water. Hardness of the hardened layer was determined by the Brinell method as per GOST 9012–59 on a TSh-2M hardness tester.
Results. The author found that DS.30G.2 defects (Classifier of Defects and Damages of Turnout Elements) could be caused not only by oxide spots and cast seams in the metal but also by insufficient strength characteristics of the crossing structure, which should be eliminated when putting the product into production; increased dynamic loads not foreseen for the respective product. Microcracks formed in further operation in the overmoulded metal layer at the tread surface (without removing the defective layer) result in metal delamination and pitting. Thus, the turning of crossings should include the removal of the entire defective layer in addition to the removal of the swells. The research has shown that the most effective technology is explosive hardening of the crossing tread surface.
Discussion and conclusion. The results show that crossing life could be improved by pre-hardening of the tread surface.
About the Author
P. V. TregubchakRussian Federation
Pavel V. TREGUBCHAK, Head of the Department, Department of Devices of the Track Superstructure and Turnouts, Research Center for Railway Infrastructure,
10, 3rd Mytishchinskaya St., Moscow, 129626.
Author ID: 779415.
References
1. Глюзберг Б.Э., Королев В.В., Шишкина И.В. Увеличение ресурса крестовин стрелочных переводов // Современные проблемы проектирования, строительства и эксплуатации железнодорожного пути: XV Междунар. науч.-техн. конф.: чтения, посвященные памяти проф. Г.М. Шахунянца, Москва, 4–5 апреля 2018 г.: тр. М.: РУТ, 2018. С. 186–187 [Gluzberg B.E., Korolev V.V., Shishkina I.V. Increasing the life of simple switch crossings. In: Modern problems of railway design, construction and operation: XV International Scientific and Technical Conference: readings in memory of Prof. G.M. Shakhunyants, 4–5 April 2018, Moscow: proceedings. Moscow: RUT; 2018. p. 186–187. (In Russ.)]. EDN: https://www.elibrary.ru/hhkygj.
2. Глюзберг Б. Э., Королев В.В., Шишкина И.В. Элементы стрелочных переводов для российских железных дорог // Внедрение современных конструкций и передовых технологий в путевое хозяйство. 2019. Т. 14, №14 (14). С. 17–20 [Gluzberg B.E., Korolev V.V., Shishkina I.V. Elements of turnouts for russian railways. Vnedreniye sovremennykh konstruktsiy i peredovykh tekhnologiy v putevoye khozyaystvo. 2019;14(14):17-20. (In Russ.)]. EDN: https://www.elibrary.ru/wuvwyl.
3. Королев В.В., Шишкина И.В. Система учета дефектов элементов стрелочных переводов // Внедрение современных конструкций и передовых технологий в путевое хозяйство. 2016. Т. 9, №9 (9). С. 190–195 [Korolev V.V., Shishkina I.V. Turnout Element Defect Accounting System. Vnedreniye sovremennykh konstruktsiy i peredovykh tekhnologiy v putevoye khozyaystvo. 2016;9(9):190-195. (In Russ.)]. EDN: https://www.elibrary.ru/wimbxd.
4. Глюзберг Б.Э. Проблемы стрелочного хозяйства высокоскоростной железнодорожной магистрали ВСЖМ-1 // Транспортное строительство: сб. ст. Второй Всерос. науч.-техн. конф., Москва, 12–14 апреля 2021 г. М.: Перо, 2021. С. 14–22 [Gluzberg B.E. Problems of switch management of the high-speed railway line VSZhM-1. In: Transport Construction: Coll. of article, Second All-Russian Scientific and Technical Conference, 12–14 April 2021, Moscow. Moscow: Pero Publ.; 2021. p. 14–22. (In Russ.)]. EDN: https://www.elibrary.ru/zzxzlj.
5. Astafurova E. G., Tukeeva M. S., Zakharova G. G., Melnikov E.V., Maier H. J. The role of twinning on microstructure and mechanical response of severely deformed single crystals of high-manganese austenitic steel. Materials characterization. 2011;62(6):588-592. https://doi.org/10.1016/j.matchar.2011.04.010.
6. Yan W., Fang L., Sun K., Xu Y. Thermodynamics of nanocrystilline formation in surface layer of Hadfield steel by shot peening. Materials Science and Engineering: A. 2007;445-446:392-397. https://doi.org/10.1016/j.msea.2006.09.061.
7. Зыкова А.П., Федосеева С.Н., Лычагин Д.В. Модифицирование стали 110Г13Л // Современные проблемы машиностроения: сб. науч. тр. VII Междунар. науч.-техн. конф., Томск, 11–13 ноября 2013 г. / под ред. А.Ю. Арляпова, А.Б. Кима. Томск: Нац. исслед. Томский политехн. ун-т, 2013. С. 86–90 [Zykova A.P., Fedoseeva S.N., Lychagin D.V. Modification of Steel 110G13L. In: Arlyapov A.Y., Kim A.B. (eds.) Modern Problems of Mechanical Engineering: Coll. of sci. articles of VII International Scientific and Technical Conference, 11–13 November 2013, Tomsk. Tomsk: National Research Tomsk Polytechnic University; 2013. p. 86–90. (In Russ.)]. EDN: https://www.elibrary.ru/rmqrzh.
8. Мулявко Н.М. Анализ эксплуатационной стойкости отливок из стали 110Г13Л // Известия Челябинского научного центра УрО РАН. 2001. №4. С. 61–70 [Mulyavko N.M. The analysis of operational resistance of castings made of steel 110G13L. Izvestiya Chelyabinskogo nauchnogo tsentra UrO RAN. 2001;(4):61-70. (In Russ.)]. EDN: https://www.elibrary.ru/bjijmp.
9. Влияние модифицирования кальцием на структуру стали Гадфильда и морфологию образующихся в ней неметаллических включений / А.Б. Ахметов [и др.] // Электрометаллургия. 2017. № 3. С. 8–12 [Akhmetov A.B., Kusainova G. D., Kuszhanova A.A., Ilyasov A.E., Sharkaev S. N. Effect of modification with calcium on hadfield steel structure and morphology of nonmetallic inclusions formed in it. Electrometallurgy. 2017;(3):8-12. (In Russ.)]. EDN: https://www.elibrary.ru/yggihd.
10. Бабокин Г.И., Подколзин А.А., Колесников Е.Б. Основы функционирования систем сервиса. В 2 ч. Ч. 1. 2-е изд., перераб. и доп. М.: Юрайт, 2023. 423 с. [Babokin G.I., Podkolzin A.A., Kolesnikov E.B. Fundamentals of the Functioning of Service Systems. In 2 parts. Part 1. 2nd ed., revised and expanded. Moscow: Yurayt Publ.; 2023. 423 p.(In Russ.)].
11. Монастырский А.В. О современных методах разработки и оптимизации технологических процессов в литейном производстве // Литейное производство. 2010. №5. С. 19–22 [Monastyrskiy A.V. Modern methods of developing and optimizing the manufacturing processes in the foundry industry. Foundry. Technology and Equipment. 2010;(5):19-22. (In Russ.)]. EDN: https://elibrary.ru/lnfstm.
12. Трегубчак П.В. Проектирование конструкции моноблочных крестовин для тяжелых условий эксплуатации // Вестник Научно-исследовательского института железнодорожного транспорта (Вестник ВНИИЖТ). 2023. Т. 82, №2. C. 146–156. [Tregubchak P.V. Design of monoblock crossing for heavy operating conditions. Russian Railway Science Journal. 2023;82(2):146-156. (In Russ.)]. https://doi.org/10.21780/2223-9731-2023-82-2-146-156.
Review
For citations:
Tregubchak P.V. Peculiarities of metal work in the defect formation zone of a monoblock crossing. RUSSIAN RAILWAY SCIENCE JOURNAL. 2023;82(4):359-368. (In Russ.) https://doi.org/10.21780/2223-9731-2023-82-4-359-368. EDN: https://elibrary.ru/wsnqvg