Preview

RUSSIAN RAILWAY SCIENCE JOURNAL

Advanced search

Estimation of line capacity of single-track section of Baikal-Amur Mainline using mass service theory

https://doi.org/10.21780/2223-9731-2023-82-4-370-384

EDN: https://elibrary.ru/omugju

Abstract

Introduction. The research is intended to assess the line capacity of the Severomuisky Section of the Baikal-Amur Mainline (BAM). The selected section is typical for the BAM and consists mainly of single-track sections. One of the stations is a sectional station (where the type of locomotive traction is changed), the section has tracks through a mountain pass and a tunnel, which enables several train traffic routes. Separate stations generally perform uniform operations, such as stop and non-stop make way, technical inspection, change of crews, as well as make way on sections. At the same time, their duration is affected by random external influences, such as weather, breakdowns, and human factor.

Materials and methods. The authors use methods of mathematical and computer modelling and apply the mass service theory to build a mathematical model of traffic working along the section. It studies objects where uniform operations are regularly performed and their duration is not deterministic. Such objects include railway systems. Simulation modelling was used to analyze the resulting models.

Results. The researchers built a mathematical model of train traffic along the Severomuisky section in the form of a mass service network with two request inflows. It is used to conduct a number of computational experiments. Their results identified bottlenecks in the section infrastructure and assessed the effectiveness of the partial batch train time-table on the section.

Discussion and conclusion. The authors found that the Severomuisky Section now has a line capacity reserve, and its train traffic may be increased from the current 23 to 27 pairs of trains per day. The studies show that partial batch timetable reduces train delays on the section but requires upgrades to some stations and does not allow for an increase in train traffic above the designated level. Thus, it is concluded that partial batch time-table on this section is inexpedient, and a significant (by times) increase in its line and traffic-carrying capacity requires the creation of a double-track service.

About the Authors

M. L. Zharkov
Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences
Russian Federation

Maxim L. ZHARKOV, Cand. Sci. (Eng.), Researcher,

134, Lermontova St., Irkutsk, 664033.

Author ID: 978394.



A. L. Kazakov
Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences; Irkutsk State Transport University
Russian Federation

Alexander L. KAZAKOV, Dr. Sci. (Phys. and Math.), Professor, Professor of Russian Academy of Sciences, Chief Researcher; Professor, Department of Operational Management,

134, Lermontova St., Irkutsk, 664033;

15, Chernyshevskiy St., Irkutsk, 664074.

AuthorID: 14911.



A. V. Suprunovsky
Irkutsk State Transport University
Russian Federation

Anton V. SUPRUNOVSKY, Senior Lecturer, Department of Operational Management,

15, Chernyshevskiy St., Irkutsk, 664074.

Author ID: 852076



References

1. Бардаль А.Б. Транспортная система Дальневосточного федерального округа: современное состояние и перспективы Восточного полигона железных дорог // Регионалистика. 2021. Т. 8, №3. С. 21–31 [Bardal A.B. The Transport System of the Far Eastern Federal District: Current State and Prospects of the Eastern Range of Railways. Regionalistica. 2021;8(3):21–31. (In Russ.)]. https://doi.org/10.14530/reg.2021.3.21.

2. Тураева М.О. Грузовой транспорт России: некоторые итоги 2022 года // Вестник Института экономики Российской академии наук. 2023. №3. С. 45–63 [Turaeva M.O. Performance of Russian freight transport in 2022: some outcomes. Vestnik Instituta Ekonomiki Rossiyskoy Akademii Nauk. 2023;(3):45-63. (In Russ.)]. https://doi.org/10.52180/2073-6487_2023_3_45_63.

3. Pyrgidis C. N. Railway Transportation Systems. Design, Construction and Operation. Boca Raton: CRC Press; 2016. 511 p. https://doi.org/10.1201/b19472.

4. Брусянин Д.А., Казаков А.Л., Маслов А.М. Оптимизация региональной маршрутной сети междугородных и пригородных пассажирских перевозок с использованием логистических принципов // Транспорт Урала. 2012. №1(32). С. 106–109 [Brusyanin D.A., Kazakov A.L., Maslov A.M. Optimization of regional route network of intercity and commuter traffic with the use of logistic principles. Transport of the Ural. 2012;(1):106–109 (In Russ).]. EDN: https://www.elibrary.ru/owwuab.

5. Оптимизация условий организации движения соединенных поездов на постоянной основе на Транссибирской магистрали Восточного полигона сети железных дорог / М.И. Мехедов [и др.] // Вестник Научно-исследовательского института железнодорожного транспорта (Вестник ВНИИЖТ). 2021. Т. 80, №1. С. 4–12 [Mekhedov M.I., Sotnikov E.A., Kholodnyak P.S., Kursin D.A., Kornienko N.B. Condition optimization for organizing the operation of connected trains on an ongoing basis on the Trans-Siberian Railway of the Eastern operational range of the railway network. Russian Railway Science Journal. 2021;80(1):4-12. (In Russ.)]. https://doi.org/10.21780/2223-9731-2021-80-1-4-12.

6. Milenkovic M., Bojovic N. Optimization Models for Rail Car Fleet Management. Elsevier Publ.; 2020. 282 р. https://doi.org/10.1016/C2017-0-03011-2.

7. Kerner B.S. Introduction to Modern Traffic Flow Theory and Control. Berlin: Springer Publ.; 2009. 265 p. https://doi.org/10.1007/978-3-642-02605-8.

8. Kozlov P., Osokin O., Timukhina E., Tushin N. Optimization of Fleet Size and Structure While Serving Given Freight Flows. In: Popovic Z., Manakov A., Breskich V. (eds.) VIII International Scientific Siberian Transport Forum. TransSiberia 2019. Vol. 2. Cham: Springer Publ.; 2020. p. 1064–1075. https://doi.org/10.1007/978-3-030-37919-3_104.

9. Об использовании моделей оптимального управления транспортными потоками / П.А. Козлов [и др.] // Вестник Уральского государственного университета путей сообщения. 2019. №1(41). С. 60–69 [Kozlov P.A., Kolokolʹnikov V.S., Tushin N.A., Osokin O.V. On using effective management models for transport flows. Herald of the Ural State University of Railway Transport. 2019;(1):60–69. (In Russ.)]. https://doi.org/10.20291/2079-0392-2019-1-60-69.

10. Козлов П.А., Вакуленко С.П., Евреенова Н.Ю. Методы исследования проектов развития объектов транспортной инфраструктуры // Академик Владимир Николаевич Образцов — основоположник транспортной науки: труды междунар. науч.-практ.конф., посвященной 125-летию университета, Москва, 22 октября 2021 г. М.: РУТ, 2021. С. 174–181 [Kozlov P.A., Vakulenko S. P., Evreenova N. Yu. Methods for researching projects for the development of transport infrastructure facilities. In: Academician Vladimir Nikolayevich Obraztsov, the founder of transport science: Proceedings of the International Scientific and Practical Conference Dedicated to the 125th Anniversary of the University, 22 October 2021, Moscow. Moscow: RUT; 2021. p. 174–181. (In Russ.)]. https://doi.org/10.47581/2022/Obrazcov.25.

11. Петров М.Б., Серков Л.А., Кожов К.Б. Имитационная модель обоснования приоритетов развития железнодорожных связей между Уралом и Западной Сибирью // Вестник УрГУПС. 2021. №4 (52). С. 50–58 [Petrov M.B., Serkov L.A., Kozhov K.B. Simulation model of substantiation of priorities for the development of railway links between the Urals and Western Siberia. Herald of the Ural State University of Railway Transport. 2021;(4):50-58. (In Russ.)]. https://doi.org/10.20291/2079-0392-2021-4-50-58.

12. Назаров А.А., Терпугов А.Ф. Теория массового обслуживания. Томск: Изд-во HTJI, 2010. 228 с. [Nazarov A.A., Terpugov A.F. Queuing Theory. Tomsk: Publishing House NTL; 2010. 228 p. (In Russ.)].

13. Dudin A., Klimenok V., Vishnevsky V. The Theory of Queuing Systems with Correlated Flows. Cham: Springer Publ.; 2019. 431 p. https://doi.org/10.1007/978-3-030-32072-0.

14. Marinov M., Viegas J. A simulation modelling methodology for evaluating flat-shunted yard operations. Simulation Modelling Practice and Theory. 2009;17(6):1106-1129. https://doi.org/10.1016/j.simpat.2009.04.001.

15. Dorda M., Teichmann D. Modelling of Freight Trains Classification Using Queueing System Subject to Breakdowns. Mathematical Problems in Engineering. 2013;2013:307652. https://doi.org/10.1155/2013/307652.

16. Карасев С.В., Калидова А.Д. Моделирование пропуска поездопотоков через однопутный лимитирующий элемент трассы при организации скоростного движения с использованием существующей инфраструктуры // Вестник Научно-исследовательского института железнодорожного транспорта (Вестник ВНИИЖТ). 2018. Т. 77, №1. С. 34–43 [Karasev S.V., Kalidova A.D. Modeling of train flow handling through a limiting single-track section of the route at the organization of high-speed operation using the existing infrastructure. Russian Railway Science Journal. 2018;77(1):34-43. (In Russ.)]. https://doi.org/10.21780/2223-9731-2018-77-1-34-43.

17. Weik N., Nießen N. Quantifying the effects of running time variability on the capacity of rail corridors. Journal of Rail Transport Planning & Management. 2020;15:100203. https://doi.org/10.1016/j.jrtpm.2020.100203.

18. Wilson N., Fourie C. J., Delmistro R. Mathematical and simulation techniques for modelling urban train networks. South African Journal of Industrial Engineering. 2016;27(2):109-119. http://dx.doi.org/10.7166/xx-x-1364.

19. Huisman T., Boucherie R. J., Van Dijk N. M. A solvable queueing network model for railway networks and its validation and applications for the Netherlands. European Journal of Operational Research. 2002;142(1):30-51. https://doi.org/10.1016/S0377-2217(01)00269-7.

20. Бычков И.В., Казаков А.Л., Жарков М.Л. Интеллектуальная технология моделирования железнодорожных станций на основе теории массового обслуживания // Управление товарными потоками и перевозочным процессом на железнодорожном транспорте на основе клиентоориентированности и логистических принципов: коллективная монография членов и научных партнеров Объединенного ученого совета ОАО «РЖД» / под. ред. Б.М. Лапидуса, А.Т. Осьминина. СПб.: ЛЕМА, 2019. С. 185–193 [Bychkov I.V., Kazakov A.L., Zharkov M.L. Smart technology of railway station modelling based on the mass service theory. In: Lapidus B.M., Osminin A.T. Management of railway commodity flows and carriage processes based on customer orientation and logistic principles: collective monograph of members and research partners of the Joint Scientific Council of the Russian Railways. St. Petersburg: LEMA Publ.; 2019. p. 185–193 (In Russ.)].

21. Bychkov I., Kazakov A., Lempert A., Zharkov M. Modeling of Railway Stations Based on Queuing Networks. Applied Sciences. 2021;11(5):2425. https://doi.org/10.3390/app11052425.

22. Kazakov A., Lempert A., Zharkov M. An approach to railway network sections modeling based on queuing networks. Journal of Rail Transport Planning & Management. 2023;27:100404. https://doi.org/10.1016/j.jrtpm.2023.100404.

23. Kazakov A., Lempert A., Zharkov M. Modeling a Section of a Single-Track Railway Network Based on Queuing Networks. In: Dudin A., Nazarov A., Moiseev A. (eds.) Information Technologies and Mathematical Modelling. Queueing Theory and Applications: Proceedings of the 21st International Conference, ITMM 2022, 25–29 October 2022, Karshi, Uzbekistan. Cham: Springer Publ.; 2023. p. 40–54. https://doi.org/10.1007/978-3-031-32990-6_4.

24. Федоров Ю. Н. Роль БАМа в современной транспортной сети России // Железнодорожный транспорт. 2019. №7. С. 5–10 [Fyodorov Yu. N. The Role of Baikal-Amur Mainline in Russia’s modern transport network. Zheleznodorozhnyy transport. 2019;(7):5-10. (In Russ.)]. EDN: https://elibrary.ru/ejrhre.


Review

For citations:


Zharkov M.L., Kazakov A.L., Suprunovsky A.V. Estimation of line capacity of single-track section of Baikal-Amur Mainline using mass service theory. RUSSIAN RAILWAY SCIENCE JOURNAL. 2023;82(4):370-384. (In Russ.) https://doi.org/10.21780/2223-9731-2023-82-4-370-384. EDN: https://elibrary.ru/omugju

Views: 308


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-9731 (Print)
ISSN 2713-2560 (Online)