Mathematical modeling of aerodynamic behavior of antenna-mast structures when designing communication on railway transport
https://doi.org/10.21780/2223-9731-2018-77-2-77-83
Abstract
About the Authors
A. A. LoktevRussian Federation
V. V. Korolev
Russian Federation
O. I. Poddaeva
Russian Federation
K. D. Stepanov
Russian Federation
I. Yu. Chernikov
Russian Federation
References
1. Urban Development Code of the Russian Federation dated December 29, 2004, no. 190-FZ (revised at July 29, 2017) (as amended and supplemented, effective from September 30, 2017) (in Russ.).
2. GOST 27751–2014. Reliability of building structures and foundations. Moscow, Standartinform Publ., 2015, 13 p. (in Russ.)
3. SP 16.13330.2011. Set of rules. Steel structures. Updated version of SNiP II-23-81*. Moscow, Minregionrazvitiya Publ., 2011, p. 124 (in Russ.).
4. SP 20.13330.2016. Set of rules. Loads and impacts. Updated version of SNiP 2.01.07 85*. Moscow, Minstroy Publ., 2016, p. 80 (in Russ.).
5. Programmnyy kompleks «MIRAZh» dlya rascheta konstruktsiy na PK. Instruktsiya pol'zovatelya [MIRAGE software package for calculating structures on a PC. User's Manual]. Kiev, NIIASS Publ., 1995, 420 p.
6. Zenkevich O. Metod konechnykh elementov v tekhnike [The finite element method in engineering]. Moscow, Mir Publ., 1975, 468 p.
7. Gorodetskiy A. S., Zavoritskiy V. I., Lantukh-Lyashchenko A. I., Rasskazov A. O. Metod konechnykh elementov v proektirovanii transportnykh sooruzheniy [The finite element method in the design of transport structures]. Kiev, Fakt Publ., 2005, 342 p.
8. Korenev B. G., Rabinovich I. M. Dinamicheskiy raschet zdaniy i sooruzheniy [Dynamic calculation of buildings and structures]. Moscow, Stroyizdat, 1984, 303 p.
9. Finn R. On the steady state solutions of the Navier – Stokes partial differential equations. Archive for Rational Mechanics and Analysis, 1959, Vol. 3, pp. 381 – 396.
10. Fujita H. On the existence and regulates of the steady-state solution of the Navier – Stokes equation. Journal of the Faculty of Science University of Tokyo, 1961, Vol. 9, pp. 59 – 102.
11. Finn R. Estmates at infinity for stationary solutions of the Navier – Stokes equations. Bulletin Mathématique de la Société des Sciences. Mathématiques et Physique de la RPR, 1959, Vol. 51, no. 3, pp. 387 – 418.
12. Finn R. On exterior stationary problem for the Navier – Stokes equation and associated perturbation problems. Archive for Rational Mechanics and Analysis, 1965, Vol. 19, pp. 363 – 406.
13. Clar D. The vorticity at infinity for solutions of the stationary Navier – Stokes equations in exterior domains. Indiana University Mathematics Journal, 1971, Vol. 20, no. 7, pp. 633 – 654.
14. Babenko K. I. Osnovy chislennogo analiza [Fundamentals of numerical analysis]. Moscow, Nauka Publ., 1986, 744 p.
15. Algazin S. D. Chislennye algoritmy bez nasyshcheniya v klassicheskikh zadachakh matematicheskoy fiziki [Numerical algorithms without saturation in classical problems of mathematical physics]. Moscow, Nauchnyy mir Publ., 2002, 155 p.
16. Algazin S. D. Chislennoe issledovanie uravneniy Nav'e – Stoksa [Numerical investigation of the Navier – Stokes equations]. Zhurnal prikladnoy mekhaniki i tekhnicheskoy fiziki, 2007, Vol. 48, no. 5, pp. 43 – 52.
17. Meller N. L., Pal'tsev B. V., Khlyupina E. G. O konechno-elementnykh realizatsiyakh iteratsionnykh metodov s rasshchepleniem granichnykh usloviy dlya sistem Stoksa i tipa Stoksa v sharovom sloe. Osesimmetrichnyy sluchay [On finite-element realizations of iterative methods with splitting of boundary conditions for Stokes systems and Stokes type in the spherical layer. Axisymmetric case]. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki, 1999, Vol. 39, no. 1, pp. 98 – 123.
18. Pal'tsev B. V., Chechel' I. I. O tochnykh otsenkakh skorosti skhodimosti iteratsionnykh metodov s rasshchepleniem granichnykh usloviy dlya sistemy tipa Stoksa v sloe s usloviem periodichnosti [On exact estimates of the rate of convergence of iterative methods with splitting of boundary conditions for a Stokes type system in a layer with the periodicity condition]. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki, 2000, Vol. 40, no. 12, pp. 1823 – 1837.
19. Loktev A. A. Udar vyazkouprugogo tela po uprugoy izotropnoy plastinke [Impact of a viscoelastic body on an elastic isotropic plate]. Mekhanika kompozitsionnykh materialov i konstruktsiy, 2007, Vol. 13, no. 3, pp. 417 – 425.
20. Loktev A. A. Uprugoplasticheskaya model' vzaimodeystviya tsilindricheskogo udarnika i plastinki [Elastic-plastic model of interaction between a cylindrical striker and a plate]. Pis'ma v Zhurnal tekhnicheskoy fiziki, 2007, Vol. 33, no. 16, pp. 72 – 77.
21. Loktev A. A., Zaletdinov A. V. Opredelenie tochek vzaimo deystviya pryamykh i otrazhennykh voln v plastinke [Determination of points of interaction of straight and reflected waves in a plate]. Vestnik MGSU [Bulletin of MGSU], 2010, no. 3 – 4, pp. 303 – 308.
22. Loktev D. A., Loktev A. A. Determination of object location by analyzing the image blur. Contemporary Engineering Sciences. 2015, Vol. 8, no. 11, pp. 467 – 475.
23. Loktev A., Sychev V., Gluzberg B., Gridasova E. Modeling the dynamic behavior of railway track taking into account the occurrence of defects in the system wheel – rail. MATEC Web of Conferences 117 (2017). XXVI R-S-P Seminar 2017. Theoretical Foundation of Civil Engineering. Pp. 1 – 6. URL: https://www.matecconferences.org/articles/matecconf/abs/2017/31/contents/contents.html (retrieved on 05.10.2017).
24. Loktev A., Poddaeva O., Fedosova A., Churin P. An Experimental Study of the Effects of Wind on a Metal Bridge Crossing with Two Independent Parallel Spans. Nonlinearity. Problems, Solutions and Applications, 2017, Vol. 1. Theoretical and Applied Mathematics, pp. 291 – 307. URL: https://www.novapublishers.com/catalog/product_info.php?products_id=62045 (retrieved on 06.10.2017).
25. ANSYS CFX 14.5. User’s Guide. Canonsburg: ANSYS Inc., 2012. URL: https://openeclass.teimes.gr/modules/document/file.php/MYP143/Ansys%20tutorials.pdf (retrieved on 06.10.2017).
26. Egorychev O. O., Churin P. S., Poddaeva O. I. Eхреrimental study of aerodynamic loads on high- rise buildings. Advanced Materials Research, 2015, Vol. 1082, pp. 250 – 253. URL: https://www.scientific.net/AMR.1082.250 (retrieved on 08.10.2017).
Review
For citations:
Loktev A.A., Korolev V.V., Poddaeva O.I., Stepanov K.D., Chernikov I.Yu. Mathematical modeling of aerodynamic behavior of antenna-mast structures when designing communication on railway transport. RUSSIAN RAILWAY SCIENCE JOURNAL. 2018;77(2):77-83. (In Russ.) https://doi.org/10.21780/2223-9731-2018-77-2-77-83