Preview

RUSSIAN RAILWAY SCIENCE JOURNAL

Advanced search

Mathematical simulation of railway track and trackside contamination with silt

https://doi.org/10.21780/2223-9731-2015-0-2-9-14

Abstract

Railway track and trackside contamination with mineral particles results from transboundary transfer of emissions from industrial facilities, which are deposited on the surface of crushed stone prism and the wayside soil band. Transportation of ores suggests partial entrainment of dust particles from the top granular layer 10 - 15 cm thick; electrified lines add dust-like particles of copper contact wires, which turn to a fixed form as hydroxides. Concentration of mobile forms of metal ores in the wayside soil band is significantly less than maximum allowable concentrations (MACs). To measure gross concentration of metal hydroxides in soils by atomic absorption method is an expensive and time-consuming procedure including withdrawal and preparation of large numbers of samples. To expedite the process and to reduce the costs of measuring the contamination of crushed stone prisms and track waysides with heavy metals we need to get the concentration dependence formula allowing to obtain the full pollution curve for the wayside and adjacent zone from one or two samples depending on the coordinates from the rail head and to determine the background concentration. Simulation of a flow around a complex shape object in turbulent conditions relates to the most difficult tasks in fluid dynamics. To describe the turbulent motions in layered gaseous environment we normally use the instruments common for the theory of fluctuations and the theory of mass transfer - like the second Fick’s equation, from which we can find the required functions of the concentration of harmful substances, depending on the vertical Z and the horizontal X coordinates. To expedite the process and to reduce the costs of measuring the contamination of the track wayside a simulation model for turbulent areas was developed on the grounds of fluctuation theory; depending on the coordinates from the rail head, one sample allows to obtain the full pollution curve for the wayside. Comparison of theoretical and experimental curves has shown a satisfactory match.

About the Authors

V. M. Belkov
JSC Railway Research Institute (JSC VNIIZhT)
Russian Federation


M. A. Zhuravlyova
Russian Open Academy of Transport at Moscow State University of Railway Engineering (ROAT MIIT)
Russian Federation


References

1. Khrgian A. Zh. Fizika atmosfery [Atmospheric physics]. Leningrad, Nauka Publ., 1969.

2. Bazarov I. P., Gevorkyan E. V., Nikolaev P. N. Termodinamika i statisticheskaya fizika. Teoriya ravnovesnykh sistem [Thermodynamics and statistical physics. The theory of equilibrium systems]. Moscow, MSU Publ., 1986. 309 p.

3. Berlyand M. E. Sovremennye problemy atmosfernoy diffuzii i zagryazneniya atmosfery [Modern problems of atmospheric diffusion and air pollution]. Leningrad, Gidrometeoizdat Publ., 1975. 448 p.

4. Vyzova N. L. Rasseyanie primesi v pogranichnom sloe atmosfery [Admixtures dispersion in the atmospheric boundary layer]. Leningrad, Gidrometeoizdat Publ., 1974. 191 p.

5. Vyzova N. L., Garger E. K., Ivanov V. I. Eksperimental’nye issledovaniya atmosfernoy diffuzii i raschety rasseyaniya primesi [Experimental studies of atmospheric diffusion and admixture scattering calculations]. Leningrad, Gidrometeoizdat Publ., 1989. 280 p.

6. Ionisyan A. S. Matematicheskoe modelirovanie protsessa rasprostraneniya aktivnoy primesi v svobodnoy i oblachnoy atmosphere [Mathematical modeling of the propagation of the active admixtures in free and cloudy atmosphere]. Stavropol’, 2003. 190 p.

7. Kaplan L. G. Lokal’nye protsessy v sploshnoy zhidkoy srede i atmosfere [Local processes in a continuous liquid medium and the atmosphere]. Stavropol’, ASOK Publ., 1993. 246 p.

8. Monin A. S. Teoreticheskie osnovy geofizicheskoy gidrodinamiki [Theoretical foundations of geophysical fluid dynamics]. Leningrad, Gidrometeoizdat Publ., 1988. 424 p.

9. Semenchin E. A. Analiticheskie resheniya kraevykh zadach v matematicheskoy modeli atmosfernoy diffuzii [Analytical solutions of boundary value problems in the mathematical model of atmospheric diffusion]. Stavropol’, SKI-UU Publ., 1993. 141 p.

10. Yaglom A. M. Diffuziya primesi ot mgnovennogo tochechnogo istochnika v turbulentnom pogranichnom sloe [The admixture diffusion from the instantaneous point source in a turbulent boundary layer]. Turbulentnye techeniya [Turbulent flows]. Moscow, Nauka Publ., 1974, pp. 62 – 64.

11. Dytnerskiy Yu. I. Protsessy i apparaty khimicheskoy tekhnologii [Processes and devices of chemical technology]. Moscow, Khimiya Publ., 1995, Pt. 1, 2. 496 p.

12. Sherwood T. K., Pigford R. L., Wilkie C. R. Mass transfer. New York, McGraw-Hill Publ., 1975. (Russ. ed.: Shervud T., Pigford R., Uilki Ch. Massoperedacha. Moscow, Khimiya Publ., 1982. 696 p.).

13. Kafarov V. V. Osnovy massoperedachi [Fundamentals of mass transfer]. Moscow, Vysshaya shkola Publ., 1972. 496 p.

14. Carlslow G., Eger D. Teploprovodnost’ tverdykh tel (transl. from Engl.) [Thermal conductivity of solids]. Moscow, Nauka Publ.,1964. 487 p.

15. Method of calculating the concentration in the air of harmful substances in industrial emissions. OND 86. Leningrad, Gidrometeoizdat Publ., 1987. 94 p. (in Russ.).


Review

For citations:


Belkov V.M., Zhuravlyova M.A. Mathematical simulation of railway track and trackside contamination with silt. RUSSIAN RAILWAY SCIENCE JOURNAL. 2015;(2):9-14. (In Russ.) https://doi.org/10.21780/2223-9731-2015-0-2-9-14

Views: 535


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-9731 (Print)
ISSN 2713-2560 (Online)