Damping of the track horizontal, transversal vibrations
https://doi.org/10.21780/2223-9731-2019-78-6-372-382
Abstract
Knowledge of the oscillation process nature in horizontal plane across the track allows selecting the way of damping for reducing decrease of strength properties of polymer gaskets, rails, sleepers and earthworks under effect of horizontal vibrodynamic loads occurring during the rolling stock movement. Maximum horizontal deformation of polymer gaskets across the track does not exceed 10% therefore stress and deformation of polymer material can be done using the Hooke’s law.
This is the first systematization of formulae for calculation of polymer gaskets, as well as the first resolution of the task when not pure shear takes place under effect of tangential stresses with simultaneous effect of vertical load. Damping coefficient of polyurethane gaskets is the same as for rubber gaskets; however, their service life is 2.5 times longer.
Based on the presented physical mesomechanics it is demonstrated regarding the surface layer of two metal bodies contact under significant load that the surface mesolayer has damping properties, and vibrating oscillations occurring in the truck wheels when rolling stock moves on the rails will be reflected from the contact pad. The process of wheel and rail sliding in transversal direction is accompanied with increase of the total rolling friction and noise, elevated wear and tear of rails and wheel rims. In order to reduce transversal deformations and amplitude of the rails and sleepers torsion oscillations during rolling movement it is proposed to change the shape of polyurethane gaskets. Gaskets with variable thickness will more effectively reflect the shear transversal oscillating waves and reduce transversal forces.
About the Author
V. M. Bel’kovRussian Federation
Vladimir M. Bel’koV, Dr. Sci. (Phys. and Math.), Scientific Consultant of NKC
Moscow, 129626
References
1. Belkov V. M., Antipov B. V. Fiziko-khimicheskiye osnovy ustoychivosti puti [The physical and chemical stability of way]. Railway track and facilities, 2013, no. 12, рp. 21–24.
2. Bel’kov V. M. Modelirovaniye uprugo-vyazkoplasticheskikh svoystv zemlyanogo polotna. Postanovka zadachi 1 [Modelling of elastoviscoplastic properties of the subgrade. Problem statement 1]. Vestnik VNIIZhT [Vestnik of the Railway Research Institute], 2016, Vol. 75, no. 6, рp. 334–338. https://doi.org/10.21780/2223-9731-2016-75-6-334-338.
3. Bel’kov V. M. Modelirovaniye uprugo-vyazkoplasticheskikh svoystv zemlyanogo polotna. Postanovka zadachi 2 [Modelling of elastoviscoplastic properties of the subgrade. Problem statement 2]. Vestnik VNIIZhT [Vestnik of the Railway Research Institute], 2017, Vol. 76, no. 1, рp. 61–64. https://doi.org/10.21780/2223-9731-2017-76-1-61-64.
4. Bel’kov V. M. Modelirovaniye vibrodempfiruyushchikh svoystv uprugovyazkoplasticheskikh sloyev zemlyanogo polotna. Postanovka zadachi 1 [Modelling of vibration-damping properties of elastic-viscoplastic layers of the roadbed. Problem statement 1]. Vestnik VNIIZhT [Vestnik of the Railway Research Institute], 2017, Vol. 76, no. 3, рp. 187–192. https://doi.org/10.21780/2223-9731-2017-76-3-187-192.
5. Bel’kov V. M. Modelirovaniye vibrodempfiruyushchikh svoystv uprugovyazkoplasticheskikh sloyev zemlyanogo polotna. Postanovka zadachi 2 [Modelling of vibration-damping properties of elastic-viscoplastic layers of the roadbed. Problem statement 2]. Vestnik VNIIZhT [Vestnik of the Railway Research Institute], 2017, Vol. 76, no. 5, рp. 312–320. https://doi.org/10.21780/2223-9731-2017-76-5-312-320.
6. Bel’kov V. M. Dempfirovaniye dinamicheskikh sil materialami, primenyayemymi pri stroitel’stve ballastnogo I bezballastnogo puti. Polimernyye prokladki [Damping of dynamic forces by materials used in the construction of ballast and ballastless tracks. Polymer pads]. Vestnik VNIIZhT [Vestnik of the Railway Research Institute], 2018, Vol. 77, no. 5, рp. 310–320. https://doi.org/10.21780/2223-9731-2018-77-5-310-320.
7. Tursunov Kh. I. Issledovaniye kolebatel’nogo protsessa v ballastnoy prizme zheleznodorozhnogo puti v usloviyakh Respubliki Uzbekistan [Examination of oscillation process in ballast section of the railway track in the conditions of the Republic of Uzbekis tan]. URL: https://docplayer.ru/45711748-H-i-tursunov-issledovanie-kolebatelnogo-processa-v-ballastnoy-prizme-zheleznodorozhnogo-puti-v-usloviyah-respubliki-uzbekistan.html (retrieved on 20.06.2019).
8. Tursunov Kh. I. Issledovaniye kolebatel’nogo protsessa v ballastnoy prizme zheleznodorozhnogo puti, zasorennoy barkhannymi peskami [Investigation of the oscillatory process in the railroad ballast, clogged sand dunes]. Engineering Journal of Don, 2012, no. 3, pp. 358–389.
9. Landau L. D., Lifshits E. M. Teoriya uprugosti [Theory of elasticity]. Theoretical physics, Vol. V–VII, Moscow, Nauka Publ., 1987, 244 p.
10. Kol’skiy G. Volny napryazheniya v tverdykh telakh [Stress waves in solid bodies]. Moscow, Publishing House of foreign literature, 1955, 194 p.
11. Chertovа N. V. O kharaktere deformatsii na svobodnoy poverkhnosti tverdogo tela [On the nature of deformation on free surface of solid body]. Applied Physics Letters, 2015, Vol. 41, no. 22, рp.15–24.
12. Chertovа N. V., Grinyaev Yu. V. O kharaktere deformatsiy na svobodnoy poverkhnosti I zhestkoy granitse razdela pri otrazhenii uprugikh voln [Deformation features on the free surface and rigid interface during elastic wave reflection]. Physical mesomechanics, 2016, Vol. 19, no. 5, рp. 58–65.
13. Chertovа N. V. Osobennosti prokhozhdeniya voln cherez granitsy razdela vyazkouprugikh sred pri nalichii defektov [Wave propagation through an interface between viscoelastic media in the presence of defects]. Journal of Applied Mechanics and Technical Physics, 2011, Vol. 52, no. 2, рp. 270−278.
14. Panin V. E., Egorushkin V. E., Panin A. V., Moiseenko D. D. Priroda lokalizatsii plasticheskoy deformatsii tverdykh tel [On the nature of plastic strain localization in solids]. Technical Physics, The Russian Journal of Applied Physics, 2007, Vol. 52, no. 8, рр. 1024−1030.
15. Panin A. V. Masshtabnyye urovni deformatsii v poverkhnostnykh sloyakh nagruzhennykh tverdykh tel i tonkikh plenkakh. Dokt. fiz.-mat. nauk diss. [Large-scale levels of deformation in the surface layers of the loaded solid bodies and thin films. Dr. phys. math. sci. diss.]. Tomsk, ISPSM SB RAS, 2006, 37 p.
16. Alekhin V. P. Fizika prochnosti I plastichnosti poverkhnostnykh sloyev materialov [Physics of strength and plasticity of materials surface layers]. Moscow, Nauka Publ., 1983, 280 p.
17. Panin V. E. Sinergeticheskiye printsipy fizicheskoy mezomekhaniki [Synergetic principles of physical mesomechanics]. Physical mesomechanics, 1999, Vol. 2, no. 6, рp. 5–23.
18. Moiseenko D. D., Zhelvakov A. L., Panin V. E. “Shakhmatnyy“ mezoeffekt interfeysa v geterogennykh sredakh v pole vneshnikh vozdeystviy [Chessboard-like mesoeffect of the interface in heterogeneous media in the fields of external actions]. Physical mesomechanics, 2006, Vol. 9, Issue 6, рp. 5−16.
19. Moiseenko D. D., Maksimov A. V., Solovyev I. A. Stokhasticheskiy podkhod k mnogourovnevomu modelirovaniyu vozmushcheniy na granitsakh razdela v nagruzhennom tverdom tele [Stochastic approach to the multilevel simulation of disturbances on the interfaces in a loaded solid]. Physical mesomechanics, 2004, Vol. 7, Issue 2, рp. 19−24.
20. Zangwill A. Physics of surfaces. Cambridge, Cambridge Interscience Publ., 1988, 339 p.
21. Datta J. Synthesis and investigation of glycolysates and obtained polyurethane elastomers. Journal of Elastomers and Plastics, 2010, Vol. 42, Issue 2, рp. 117–127. https://doi.org/10.1177/0095244309354368.
22. Maity M., Khatua B. B., Das C.K. Polyblend systems of polyurethane rubber and silicone rubber in the presence of silane grafting agent. Journal of Elastomers and Plastics, 2001, Vol. 33, Issue 3, рp. 211–224. https://doi.org/10.1106/vu5m-a4ex-4my9-cbr4.
23. Govorčin Bajsić E., Rek V., Agić A. Thermal degradation of polyurethane elastomers: determination of kinetic parameters. Journal of Elastomers and Plastics, 2003, Vol. 35, Issue 4, рр. 311–323. https://doi.org/10.1177/009524403034393.
24. Antoshin G. V., Derzhavets Yu. A., Sivchikov R. V., Yakovlev R. N. Utochnennyy raschet napryazhenno-deformirovannogo sostoyaniya koles s massivnym uprugim obodom metodom konechnogo elementa [Specified calculation of the stress-strain state of wheels with massive elastic rim using the finite element method]. Machine-building and automation of production, Interuniversity collection. Saint Petersburg, NWPI, 1999, Issue 15, рp. 35–40.
25. Derzhavets A. Yu., Yakovlev S. N. Predotvrashcheniye avtokolebaniy pri finishnoy obrabotke metalloelastomernykh detaley [Prevention of self-oscillations at final processing of the metalin-elastomer parts]. Machine-building and automation of production, Inter-university collection. Saint Petersburg, NWPI, 2000, рp. 27–32.
26. Grigoryev E. T. Raschet I konstruirovaniye rezinovykh amortizatorov [Calculation and design of rubber shock-absorbers]. Moscow, Mashgiz Publ., 1960, 164 p.
27. Mazurin V. L. Opredeleniye staticheskoy deformatsii poliuretanovykh amortizatorov, rabotayushchikh na sdvig [Determination of static deformation of polyurethane shock-absorbers working in shear]. Scientific and technical bulletin of Saint Petersburg State Technical University, Machine-building, 2014, Issue 1, рp. 143–148.
28. Entsiklopediya polimerov. Polioksadiazoly ― Ya [Encyclopedia of polymers. Polyoxadiazoles-I]. Ed. by V. A. Kabanov. Moscow, Soviet encyclopedia Publ., 1977, Vol. 3, рp. 638–641.
29. Yakovlev S. N. O nekotorykh fizicheskikh svoystvakh konstruktsionnykh poliuretanov [Some physical properties of constructive polyurethanes]. Bull. of SPbSTI (TU), 2013, no. 20, рp. 78–80.
30. Right P., Cumming A. Poliuretanovyye elastomery [Polyurethane elastomers]. Moscow, Khimiya Publ., 1973, 304 p.
31. Barvinok V. A., Fedotov Yu. V., Rodin N. P., Kirilin A. N. Uprugo-plasticheskoye samouprochneniye (avtofrettirovaniye) tolsto stennykh konteynerov davleniyem elastichnoy sredy [Elastoplastic self-reinforcement (autofretting) of thick-walled containers by pres sure of elastic agen]. Izvestia RAS SamSC, 1999, Vol. 1, no. 1, рp. 157–160.
32. Mazurin V. L., Yakovlev R. N. Opredeleniye zhestkosti poliuretanovogo tsilindricheskogo amortizatora pri staticheskom nagruzhenii [Determination of hardness of polyurethane cylindrical shock-absorber at static loading]. Instrument i tekhnologii, 2011, no. 33, рp. 22–27.
33. Lipatov Yu. R., Kercha Yu. Yu., Sergeeva L. M. Struktura i svoystva poliuretanov [Structure and properties of polyurethane]. Kiev, Naukova dumka Publ., 1970, 288 p.
34. Kozhushko A. A. Raschet napryazhenno-deformirovannogo sostoyaniya elastomernykh elementov vibroizolyatorov s uchetom osobennostey ikh vyazkouprugogo deformirovaniya. Kand. tekh. nauk diss. [Calculation of the stress-strain state of elastomeric elements of shock-absorbers with regard to the features of their visco-elastic deforming. Cand. tech. sci. diss.]. Omsk, Omsk State Technical University, 2012, 18 p.
35. Zhang H., Chen Y., Zhang Y., Sun X., Ye H., Li W. Synthesis and characterization of polyurethane elastomers. Journal of Elastomers & Plastics, 2008, Vol. 40, no. 2, рр. 161–177. https://doi.org/10.1177/0095244307085540.
36. Yakovlev S. N. Raschet poliuretanovykh detaley, rabotayushchikh na szhatiye pri staticheskoy nagruzke [Calculation of polyurethane details which are working on shrinkage under static load]. St. Petersburg State Polytechnical University Journal, 2014, no. 1, рp. 137–142.
37. Evtukh E. R. Vliyaniye rel’sovykh stykov na kontaktno-ustalostnuyu prochnost’ koles zheleznodorozhnogo podvizhnogo sostava. Kand. tekh. nauk diss. [Effect of rails joints on the contactfatigue strength of wheels of the railway rolling stock. Cand. tech. sci. diss.]. Bryansk, Bryansk State Technical University, 2014, 111 p.
38. Vashchuk D. B., Rosin G. R. Dinamicheskiye svoystva reziny [Dynamic properties of rubber]. Akusticheskij Zhurnal, 1973, Vol. 19, no. 2, рp. 140–143.
Review
For citations:
Bel’kov V.M. Damping of the track horizontal, transversal vibrations. RUSSIAN RAILWAY SCIENCE JOURNAL. 2019;78(6):372-382. (In Russ.) https://doi.org/10.21780/2223-9731-2019-78-6-372-382