Preview

RUSSIAN RAILWAY SCIENCE JOURNAL

Advanced search

Study of electromagnetic processes in the system “contact network—electric locomotive” while reducing the minimum opening angle of the thyristors in the rectifier-inverter converter

https://doi.org/10.21780/2223-9731-2020-79-2-93-102

Abstract

A new method is proposed for increasing the power factor of an electric locomotive by changing the minimum opening angle of thyristors α0 of a rectifier-inverter converter. The decrease in the angle α0 is due to changes in both the structure of the transducer and the zone of its regulation. A pulse  synchronization device has been developed that makes it possible to generate pulses with strong distortions of the mains voltage Uc at the points of natural transition of the voltage of the fundamental frequency Uс through the zero line. Based on this device, an α0 pulse-forming device was developed that eliminates the influence of pre- and post-switching voltage fluctuations. A “contact network—electric locomotive” model was created in the environment of MatLab/Simulink, taking into account the nonlinearity of the longitudinal parameters of the contact network. The effect of decreasing the angle α0 on the character of pre- and post-switching voltage fluctuations was analyzed, and the parameters of  transient processes were calculated. Particular attention was paid to modeling the parameters of traction network. The primary network parameters adopted in the model correspond to theoretical parameters for the selected type of contact suspension. Their high convergence is confirmed by the calculation of the coefficient of determination R2. Calculations on the “contact network — electric locomotive” model show that compared with the standard scheme of the electric locomotive, where the minimum opening angle of the thyristors is α0 = 9° el., the decrease in the angle α0 to 4.5° el. leads to an almost twofold decrease in the amplitude of pre-switching voltage fluctuations and a small decrease in the amplitude of post-switching voltage fluctuations. The model results indicate that a decrease in the minimum thyristor opening angle α0 leads to an increase in the power factor of the electric locomotive.

About the Authors

Yu. M. Kulinich
Federal State Budgetary Educational Institution of Higher Education “Far Eastern State University of Railway Engineering” (FGBOU VO DVGUPS)
Russian Federation
Dr. Sci. (Eng.), Professor, Department “Railway transport”

Khabarovsk, 680021, Russia


D. Yu. Drogolov
Federal State Budgetary Educational Institution of Higher Education “Far Eastern State University of Railway Engineering” (FGBOU VO DVGUPS)
Russian Federation
Post-graduate, Teacher, Department “Railway transport”

Khabarovsk, 680021, Russia


References

1. GOST R 55364–2012. Electric locomotives. General technical requirements. Moscow, Standartinform Publ., 2013, 36 p. (in Russ.).

2. Kulinich Yu. M., Shukharev S. A., Drogolov D. Yu. Povyshenie koeffitsienta moshchnosti elektrovoza peremennogo toka za schet izmeneniya struktury preobrazovatelya [Increasing the power factor of an AC electric locomotive by changing the structure of the converter]. Izvestiya vysshikh uchebnykh zavedeniy. Elektromekhanika [News of Higher Education Institutions. Electromechanics], 2019, Vol. 62, no. 2, pp. 47–52.

3. Shukharev S. A., Drogolov D. Yu. Povyshenie energeticheskikh pokazateley mnogozonnykh preobrazovateley [Improving the energy performance of multi-zone converters]. Prakticheskaya silovaya elektronika [Practical power electronics], 2019, no. 3, pp. 41–46.

4. Kulinich Yu. M., Drogolov D. Yu., Shukharev S. A. Converter single­phase direct current. Pat. No. 2706422: MPK Н02М 7/162; published on 19.11.2019, Bull. 32 (in Russ.).

5. Tikhmenev B. N., Kuchumov V. A. Elektrovozy peremennogo toka s tiristornymi preobrazovatelyami [AC electric locomotives with thyristor converters]. Moscow, Transport Publ., 1988, 311 p.

6. Kuchumov V.A., Shirochenko N.N. Elektromagnitnye protsessy v tyagovoy seti s raspredelennoy emkost'yu pri kommutatsii toka v preobrazovatele elektropodvizhnogo sostava [Electromagnetic processes in a traction network with distributed capacity when switching current in a converter of electric rolling stock]. Vestnik VNIIZhT [Vestnik of the Railway Research Institute], 1984, no. 1, pp. 19–23.

7. Kuchumov V. A., Shirochenko N. N. Elektromagnitnye protsessy v tyagovoy seti s raspredelennoy emkost'yu pri vypryamlenii toka v preobrazovatele elektropodvizhnogo sostava [Electromagnetic processes in a traction network with distributed capacity when rectifying the current in an electric rolling stock converter]. Vestnik VNIIZhT [Vestnik of the Railway Research Institute], 1984, no. 8, pp. 23–27.

8. Tikhmenev B. N., Frolenkov I. N. Method of phase control of thyristor converters, simultaneously working on individual loads. Pat. No. 462261: MPK H02M 7/53846; published on 28.02.1975, Bull. 8 (in Russ.).

9. Kulinich Yu. M., Drogolov D. Yu. Ustroystva upravleniya preobrazovatelem elektrovoza peremennogo toka pri iskazheniyakh pitayushchego napryazheniya [Control devices for the converter of an alternating current electric locomotive with distortion of the supply voltage]. Elektronika i elektrooborudovanie transporta, 2019, no. 4, pp. 16–20.

10. Kulinich Yu. M., Savos'kin A. N. Shaper of synchronizing pulses. Pat. No. 2183378: MPK Н02М 1/08, Н03К 5/1536; published on 10.06.2002, Bull. 16 (in Russ.).

11. Kulinich Yu. M., Drogolov D. Yu., Shukharev S. A. Device for forming minimal control angles. Pat. No. 2709026: MPK Н02М 1/08; published on 13.12.2019, Bull. 35 (in Russ.).

12. Vlas'evskiy S. V., Skorik V. G. Reducing switching and postswitching voltage fluctuations in the contact network during the operation of AC electric locomotives. Bulletin of the All-Russian Research and Design Institute of Electric Locomotive, 2006, no. 3, pp. 84–89.

13. Savos'kin A. N., Kulinich Yu. M., Alekseev A. S. Matematicheskoe modelirovanie elektromagnitnykh protsessov v dinamicheskoy sisteme “kontaktnaya set' — elektrovoz” [Mathematical modeling of electromagnetic processes in the dynamic system “contact network—electric locomotive”]. Elektrichestvo [Electricity], 2002, no. 2, pp. 29–35.

14. Kulinich Yu. M., Nakhodkin V. V., Shirochenko N. N., Kuchumov V. A., Shtiben G. A. Tests of an electric locomotive VL85 with different­phase control of rectifier­inverter converters. Vestnik of the Railway Research Institute, 1986, no. 4, pp. 23–26.

15. Konnikov I. A. Skhemotekhnicheskoe modelirovanie linii s raspredelennymi parametrami [Schematic modeling of a line with distributed parameters]. Elektrichestvo [Electricity], 2009, no. 3, pp. 50–53.

16. Ermolenko D. V. Povyshenie elektromagnitnoy sovmestimosti sistemy tyagovogo elektrosnabzheniya s tiristornym elektropodvizhnym sostavom. Kand. tekhn. nauk avtoref. diss. [Improving the electromagnetic compatibility of the traction power supply system with thyristor electric rolling stock. Cand. tech. sci. diss. synopsis]. Moscow, 1991, 22 p.

17. German-Galkin S. G. Virtual'nye laboratorii poluprovodnikovykh sistem v srede MatLab­Simulink [Virtual laboratories of semiconductor systems in the environment of MatLab-Simulink]. St. Petersburg, Lan' Publ., 2013, 443 p.

18. Bader M. P. Elektromagnitnaya sovmestimost' [Electromagnetic compatibility]. Moscow, UMK MPS Publ., 2002, 638 p.

19. Bessonov L. A. Teoreticheskie osnovy elektrotekhniki [Theoretical foundations of electrical engineering]. Moscow, Vysshaya shkola Publ., 1996, 638 p.


Review

For citations:


Kulinich Yu.M., Drogolov D.Yu. Study of electromagnetic processes in the system “contact network—electric locomotive” while reducing the minimum opening angle of the thyristors in the rectifier-inverter converter. RUSSIAN RAILWAY SCIENCE JOURNAL. 2020;79(2):93-102. (In Russ.) https://doi.org/10.21780/2223-9731-2020-79-2-93-102

Views: 632


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-9731 (Print)
ISSN 2713-2560 (Online)