Preview

RUSSIAN RAILWAY SCIENCE JOURNAL

Advanced search

Study of the functional diagram and algorithm of tracking system for electrodynamic braking of DC electric train

https://doi.org/10.21780/2223-9731-2020-79-2-103-116

Abstract

One of the key ways to save operating costs in suburban traffic on lines electrified with direct current is to increase the return of electric energy when the drivers use the regenerative braking mode.
Electrodynamic braking control systems that track the magnitude of the voltage of the contact network  can increase the percentage of return of electric energy from the use of regenerative braking due to the rapid redistribution of energy generated by traction motors. Similar systems (the so-called tracking systems) are used on DC electric trains with an asynchronous traction drive. In this work, authors analyzed an electrodynamic braking system for a DC electric train with a collector traction drive, which regulates the recovery current by changing the resistance of the braking resistor, and the armature current due to the magnetic flux of the motors. Characteristics of the pulse braking resistance controller for the current settings of the 250 and 350 A armature were calculated. Functional diagram of the tracking system with a description of its individual elements is developed. On a simulation model, electromagnetic processes in the  power circuit of an electric train were studied with a changing current consumption. Based on the analysis of the model results, the ability of the tracking system to regulate the armature current with full absorption of electricity by the consumer is shown. The article provides the refined algorithm for the transition of the servo system from the mode of regenerativerheostatic braking to rheostatic with excessive generation of electricity. The developed algorithm of the tracking system provides a stable implementation of the braking force in the entire range of speeds and at various levels of consumption of generated electricity. A rheostatic braking circuit with stabilization of the maximum value of the excitation current at low speeds is proposed.

About the Authors

V. A. Baranov
The St. Petersburg Center for Organization of Work of Railway Stations of the Oktyabrskaya Directorate of Traffic Management (DTsS-3 of the Oktyabrskaya D, TsD of the JSC “RZD”)
Russian Federation
Cand. Sci. (Eng.), Station Duty Officer

St. Petersburg, 191036 Russia


I. P. Vikulov
Federal State Budgetary Educational Institution of Higher Education “Petersburg State University of Railways of the Emperor Alexander I” (FGBOU VO PGUPS)
Russian Federation
Cand. Sci. (Eng.), Associate Professor, Department “Electric traction”

St. Petersburg, 190031, Russia


A. A. Kiselev
Federal State Budgetary Educational Institution of Higher Education “Petersburg State University of Railways of the Emperor Alexander I” (FGBOU VO PGUPS)
Russian Federation
Post-graduate, Department “Electric traction”

St. Petersburg, 190031, Russia


A. S. Maznev
Federal State Budgetary Educational Institution of Higher Education “Petersburg State University of Railways of the Emperor Alexander I” (FGBOU VO PGUPS)
Russian Federation

Dr. Sci. (Eng.), Professor, Professor of the Department “Electric traction” 

St. Petersburg, 190031, Russia

 



References

1. Cheremisin V. T., Nezevak V. L., Shatokhin A. P. Sovershenstvovanie sistemy tyagovogo elektrosnabzheniya postoyannogo toka s nakopitelyami elektricheskoy energii na poligonakh obrashcheniya tyazhelovesnykh poezdov [Improving the traction power supply system of DC with electric energy storage at the operational areas for heavy-haul trains]. Omsk, OmGUPS Publ., 2018, 282 p.

2. Markvardt K. G. Kontaktnaya set' [Catenary system]. Moscow, Transport Publ., 1994, 335 p.

3. Lapidus B. M. Povyshenie energoeffektivnosti i perspektivy ispol'zovaniya vodorodnykh toplivnykh elementov na zheleznodorozhnom transporte [Improvements in energy efficiency and the potential use of hydrogen fuel cells in railway transport]. Vestnik VNIIZhT [Vestnik of the Railway Research Institute], 2019, Vol. 78, no. 5, pp. 274–283. URL: https://doi.org/ 10.21780/2223-9731-2019-78-5-274-283 (retrieved on 24.02.2020).

4. Savos’kin A. N., Pudovikov O. E., Garbuzov I. I. Analysis of electromagnetic processes in the traction network under the interaction of electric locomotives in the regeneration and traction modes. Russian Electrical Engineering, 2014, Vol. 85, no. 5, pp. 305–311. URL: https://doi.org/10.3103/S1068371214050113 (retrieved on 24.02.2020).

5. Baranov L. A., Grechishnikov V. A., Ershov A. V., Rodionov M. D., Shevlyugin M. V. Performance indices of stationary energy storage in the traction substations of the Moscow Metro. Russian Electrical Engineering, 2014, Vol. 85, no. 8, pp. 493–497. URL: https://doi.org/10.3103/S1068371214080033 (retrieved on 26.02.2020).

6. Cheremisin V. T., Vil'gel'm A. S., Kvashchuk V. A., Nezevak V. L. Vliyanie rekuperativnogo tormozheniya na sistemu tyagovogo elektrosnabzheniya [Effect of regenerative braking on the traction power supply system]. Lokomotiv [Locomotive], 2013, no. 8, pp. 5–8.

7. Sopov V. I., Shchurov N. I., Ivanov A. V., Kuznetsov A. P. Adaptive systems of traction power supply. Russian Electrical Engineering, 2014, Vol. 85, no. 12, pp. 729–733. URL: https://doi.org/10.3103/S1068371214120141 (retrieved on 27.02.2020).

8. Baranov V. A. Elektricheskie skhemy elektropoezdov postoyannogo toka s elektricheskim tormozheniem [Electric circuits of DC electric trains with electric braking]. Lokomotiv [Locomotive], 2009, no. 8, pp. 36–37; no. 9, pp. 26–28.

9. Baranov V. A., Vikulov I. P., Kiselev A. A., Maznev A. S. Sledyashchaya sistema elektrodinamicheskogo tormozheniya elektropoezda postoyannogo toka s kollektornymi tyagovymi dvigatelyami [Monitoring system of electrodynamic braking of DC electric train with collector traction motors]. Vestnik VNIIZhT [Vestnik of the Railway Research Institute], 2018, Vol. 77, no. 5, pp. 301–309. URL: https://doi.org/10.21780/2223-9731-2018-77-5-301-309 (retrieved on 24.02.2020).

10. Egorov V. P., Burgsdorf E. A. Upravlenie elektrodinamicheskim tormozom na elektropoezdakh [Control of the electrodynamic brake on electric trains]. Lokomotiv [Locomotive], 2019, no. 5, p. 36.

11. Baranov V. A., Maznev A. S., Vikulov I. P. Elektroprivod postoyannogo toka. Pat. 164435 FIRS (Rospatent): MPK B60L 9/04 (2006/01); opubl. 27.08.2016, Byul. № 24 [Electric drive DC. Pat. 164435 FIRS (Rospatent): MPK B60L 9/04 (2006/01); published 27.08.2016, Bull. 24] (in Russ.).

12. Nazarov O. N. K otsenke energeticheskoy effektivnosti perspektivnykh prigorodnykh elektropoezdov postoyannogo toka [On the assessment of the energy efficiency of promising suburban DC electric trains]. Vestnik VNIIZhT [Vestnik of the Railway Research Institute], 1998, no. 6, pp. 35–39.

13. German-Galkin S. G. Komp'yuternoe modelirovanie poluprovodnikovykh sistem v MatLab 6.0. Ucheb. posobie [Computer simulation of semiconductor systems in MatLab 6.0. Textbook]. St. Petersburg, Korona Print Publ., 2001, 320 p.

14. Shiryaev A. V. Vysokoskorostnye poezda Sapsan V1 i V2 [High-speed trains Sapsan V1 and V2]. Moscow, JSC “RZD” Publ., 2013, 522 p.

15. Yakushev A. Ya. Avtomatizirovannye sistemy upravleniya elektricheskim podvizhnym sostavom. Uchebnik [Automated control systems for electric rolling stock. Textbook]. Moscow, FGBOU “Uchebno-metodicheskiy tsentr po obrazovaniyu na zheleznodorozhnom transporte” [FGBOU Educational and Methodological Center for Education in Railway Transport], 2016, 300 p.

16. Petrov V. B., Kal'nitskiy A. S., Zabolotskiy S. A. Osobennosti konstruktsii i elektricheskikh tsepey elektropoezdov “Lastochka” [Features of the design and electrical circuits of electric trains “Lastochka”]. Lokomotiv [Locomotive], 2018, no. 8, pp. 38–41.

17. Baranov L. A., Savos'kin A. N., Pudovikov O. E. [et al.]. Avtomatizirovannye sistemy upravleniya elektropodvizhnym sostavom. Ch. 1. Teoriya avtomaticheskogo upravleniya [Automated control systems for electric rolling stock. Part 1. The theory of automatic control]. Moscow, FGBOU “Uchebno-metodicheskiy

18. Zarif'yan A. A. Asinkhronnyy tyagovyy privod lokomotivov [Asynchronous traction drive of locomotives]. Moscow, FGBOU “Uchebno-metodicheskiy tsentr po obrazovaniyu na zheleznodorozhnom transporte” [FGBOU Educational and Methodological Center for Education in Railway Transport] Publ., 2013. 413 p.

19. tsentr po obrazovaniyu na zheleznodorozhnom transporte” [FGBOU Educational and Methodological Center for Education in Railway Transport], 2014, 400 p

20. Shcherbakov V.G., Petrushin A.D., Khomenko B.I., Sedov V.I. Tyagovye elektricheskie mashiny [Traction electric machines]. Moscow, FGBOU “Uchebno-metodicheskiy tsentr po obrazovaniyu na zheleznodorozhnom transporte” [FGBOU Educational and Methodological Center for Education in Railway Transport], 2016, 641 p.

21. Evstaf'ev A. M. Primenenie gibridnykh tekhnologiy v tyagovom podvizhnom sostave [Application of hybrid technologies in traction rolling stock]. Byulleten' rezul'tatov nauchnykh issledovaniy [Russian Journal of Logistics & Transport Management], 2018, no. 4, pp. 27–38.

22. Cheremisin V. T., Nezevak V. L., Shatokhin A. P. Sovershenstvovanie sistemy tyagovogo elektrosnabzheniya postoyannogo toka s nakopitelyami elektricheskoy energii na poligonakh obrashcheniya tyazhelovesnykh poezdov [Improving the traction power supply system of DC with electric energy storage at the operational areas for heavy-haul trains]. Omsk, OmGUPS Publ., 2018, 282 p.

23. Lapidus B. M. Povyshenie energoeffektivnosti i perspektivy ispol'zovaniya vodorodnykh toplivnykh elementov na zheleznodorozhnom transporte [Improvements in energy efficiency and the potential use of hydrogen fuel cells in railway transport]. Vestnik VNIIZhT [Vestnik of the Railway Research Institute], 2019, Vol. 78, no. 5, pp. 274–283. URL: https://doi.org/ 10.21780/2223-9731-2019-78-5-274-283 (retrieved on 24.02.2020).

24. Baranov L. A., Grechishnikov V. A., Ershov A. V., Rodionov M. D., Shevlyugin M. V. Performance indices of stationary energy storage in the traction substations of the Moscow Metro. Russian Electrical Engineering, 2014, Vol. 85, no. 8, pp. 493–497. URL: https://doi.org/10.3103/S1068371214080033 (retrieved on 26.02.2020).

25. Sopov V. I., Shchurov N. I., Ivanov A. V., Kuznetsov A. P. Adaptive systems of traction power supply. Russian Electrical Engineering, 2014, Vol. 85, no. 12, pp. 729–733. URL: https://doi.org/10.3103/S1068371214120141 (retrieved on 27.02.2020).

26. Baranov V. A., Vikulov I. P., Kiselev A. A., Maznev A. S. Sledyashchaya sistema elektrodinamicheskogo tormozheniya elektropoezda postoyannogo toka s kollektornymi tyagovymi dvigatelyami [Monitoring system of electrodynamic braking of DC electric train with collector traction motors]. Vestnik VNIIZhT [Vestnik of the Railway Research Institute], 2018, Vol. 77, no. 5, pp. 301–309. URL: https://doi.org/10.21780/2223-9731-2018-77-5-301-309 (retrieved on 24.02.2020).

27. Baranov V. A., Maznev A. S., Vikulov I. P. Elektroprivod postoyannogo toka. Pat. 164435 FIRS (Rospatent): MPK B60L 9/04 (2006/01); opubl. 27.08.2016, Byul. № 24 [Electric drive DC. Pat. 164435 FIRS (Rospatent): MPK B60L 9/04 (2006/01); published 27.08.2016, Bull. 24] (in Russ.).

28. German-Galkin S. G. Komp'yuternoe modelirovanie poluprovodnikovykh sistem v MatLab 6.0. Ucheb. posobie [Computer simulation of semiconductor systems in MatLab 6.0. Textbook]. St. Petersburg, Korona Print Publ., 2001, 320 p.

29. Yakushev A. Ya. Avtomatizirovannye sistemy upravleniya elektricheskim podvizhnym sostavom. Uchebnik [Automated control systems for electric rolling stock. Textbook]. Moscow, FGBOU “Uchebno-metodicheskiy tsentr po obrazovaniyu na zheleznodorozhnom transporte” [FGBOU Educational and Methodological Center for Education in Railway Transport], 2016, 300 p.

30. Baranov L. A., Savos'kin A. N., Pudovikov O. E. [et al.]. Avtomatizirovannye sistemy upravleniya elektropodvizhnym sostavom. Ch. 1. Teoriya avtomaticheskogo upravleniya [Automated control systems for electric rolling stock. Part 1. The theory of automatic control]. Moscow, FGBOU “Uchebno-metodicheskiy

31. tsentr po obrazovaniyu na zheleznodorozhnom transporte” [FGBOU Educational and Methodological Center for Education in Railway Transport], 2014, 400 p


Review

For citations:


Baranov V.A., Vikulov I.P., Kiselev A.A., Maznev A.S. Study of the functional diagram and algorithm of tracking system for electrodynamic braking of DC electric train. RUSSIAN RAILWAY SCIENCE JOURNAL. 2020;79(2):103-116. (In Russ.) https://doi.org/10.21780/2223-9731-2020-79-2-103-116

Views: 758


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-9731 (Print)
ISSN 2713-2560 (Online)