Analysis and prediction of the stability of train control systems to ultra-wideband electromagnetic pulses of intentional action
https://doi.org/10.21780/2223-9731-2020-79-4-239-244
Abstract
Problem of ensuring stability of railway automation systems to ultra-wideband pulses of an electromagnetic field is considered. These pulses can be used to intentionally affect the equipment of these systems. It is shown that modern complex systems of control and safety of train traffic are vulnerable to electromagnetic impulses of intentional action. The features that determine the difference between the problem of ensuring the stability of railway automation systems from information systems are highlighted. In particular, microprocessor-based automation systems are geographically distributed and accessible for action from a short distance.
The test generators used to prove immunity to electromagnetic impulses from intentional exposure are unique installations. Therefore, to reduce the number of tests design estimates and comprehensive tests for immunity to electromagnetic interference are required. Electrostatic discharges have the widest frequency spectrum. They act on the same apertures in the housings of technical means of railway automation systems as impulses of intentional action. The level of energy absorbed in electronic nodes can be calculated using the Rayleigh theorem. The electromagnetic field inside the housing is determined by the known relations for the radiation of the antennas and depends on the spectrum of the electric component of the field in the antenna aperture. This spectrum, in turn, depends on the spectrum of the electrostatic discharge pulse and the geometric parameters of the antenna.
When an electromagnetic wave of an intentional impulse is incident, the aperture releases this impulse and transmits it into the housing. Therefore, the intentional impulse emitted into the housing and the electrostatic discharge impulse can be compared in shape and amplitude. Pulses of different shapes, in turn, can be compared using the spectral-energy equivalence condition. Intentional impulse equivalent to an electrostatic discharge impulse and, accordingly, having the same energy with it, causes exactly the same failures or setback of the element base. The amplitude of the pulse received by the aperture and the amplitude of the transmitted pulse are related by the utilization of the antenna. Thus, authors have obtained a technique for indirectly assessing the influence of an electromagnetic pulse of intentional action based on the calculated prediction of the resistance of railway automation systems to electrostatic discharges.
An analogue of the equation of power suppression of radioelectronic means is obtained, which allows finding the parameters of an electromagnetic pulse generator that creates dangerous pulses for railway automation systems. Also, this equation allows calculating the size of the suppression zone for a given generator.
About the Author
D. V. KomnatnyyBelarus
Dmitriy V. Komnatnyy - Cand. Sci. (Eng.), Associate Professor, Department Automation, telemechanics and communication.
Gomel, 246653
References
1. Rozenberg I. N., Matyukhin V. G., Shabunin A. B., Umanskiy V I. Innovatsionnye tekhnologii interval'nogo regulirovaniya — osnova sistemy upravleniya dvizheniem na MTsK [Innovative technologies of interval regulation — the basis of the traffic control system at the MCC]. Automation, communication and informatics, 2019, no. 6, pp. 5-10.
2. Rogacheva I. L. Ekspluatatsionnaya nadezhnost' sistem elek-tricheskoy tsentralizatsii novogo pokoleniya [Operational reliability of new generation electrical interlocking systems]. Moscow, Marshrut Publ., 2006, 220 p.
3. Gorelik A. V., Shalyagin D. V., Borovkov Yu. G., Mitrokhin V E. Sistemy zheleznodorozhnoy avtomatiki, telemekhaniki i svyazi. V2-kh ch. Ch. 1 [Systems of railway automation, telemechanics and communication. In 2 parts. Part 1]. Moscow, FGBOU "Uchebno-me-tod. tsentr po obrazovaniyu na zh.-d. transporte" [FGBOU "Teaching method. center for education on the railway transport"], 2012, 212 p.
4. Kiselev I. P., Blazhko L. S., Burkov A. T. [et al.]. Vysokoskorost-noy zheleznodorozhnyy transport. Obshchiy kurs. V 2-kh t. T 1 [High-speed rail transport. General course. In 2 vol. Vol. 1]. Moscow, FGBOU "Uchebno-metod. tsentr po obrazovaniyu na zh.-d. transporte" [FGBOU "Teaching method. center for education on the railway transport"], 2014, 308 p.
5. Bakstrom M., Kemp M., Loborev V., Lovetri Dzh., Missie M., Mozhert K., Meek Dzh., Nitch D., Gazizov T. Elektromagnitnyy ter-rorizm na rubezhe tysyacheletiy [Electromagnetic Terrorism at the Turn of the Millennium]. Tomsk, Izd-vo Tomskogo un-ta [Tomsk Institute Publ.], 2002, 206 p.
6. Bochkov K. A., Gapanovich V. A., Komnatnyy D. V., Rozenberg E. N. Razvitie sovremennykh sistem zheleznodorozhnoy avtomatiki i telemekhaniki s uchetom trebovaniy funktsional'noy i informatsionnoy bezopasnosti [Development of modern systems of railway automation and telemechanics taking into account the requirements of functional and information security]. Avtomatika i telemekhanika na zheleznodorozhnom transporte: 9-ya Mezhdunar. konf. (Sochi, 17-18 okt. 2018). Sb. dokl. [Automation and telemechanics on railway transport: 9th Inter. conf. (Sochi, October 17-18, 2018). Coll. of reports]. RGUPS, OAO "RZhD", Severo-Kavkazskaya zh.-d. [North Caucasian railway]. Rostov n/D, 2018, pp. 224-231.
7. Torokin A. A. Inzhenerno-tekhnicheskaya zashchita infor-matsii [Engineering and technical protection of information]. Moscow, Gelios ARV Publ., 2005, 960 p.
8. Schleger A., Brebbia C. Infrastructure Risk Assesment and Management. New York, WIT Press, 2016, 158 p.
9. Wright D., Kreissl R. Surveillance in Europe. London, Routledge, 2015, 415 p.
10. Kechiev L. N., Pozhidaev E. A. Zashchita elektronnykh sredstv ot vozdeystviya staticheskogo elektrichestva [Protection of electronic devices from the effects of static electricity]. Moscow, Tekhnologii Publ., 2005, 352 p.
11. Bochkov K. A., Komnatnyy D. V Elementy modelirovaniya elektromagnitnoy sovmestimosti ustroystvzheleznodorozhnoy avtomatiki i telemekhaniki [Elements for modeling electromagnetic compatibility of devices for railway automation and telemechanics]. Gomel, BelGUT Publ., 2013, 185 p.
12. Nikol'skiy V. V. Teoriya elektromagnitnogo polya [Theory of electromagnetic field]. Moscow, Vysshaya shkola Publ., 1964, 584 p.
13. Komissarov Yu. Ya., Rodionov S. S. Pomekhoustoychivost' i elektromagnitnaya sovmestimost' radioelektronnykh sredstv [Noise immunity and electromagnetic compatibility of radio-electronic means]. Kiev, Tekhnika Publ., 1978, 208 p.
14. Ivanov V. A., Il'nitskiy L. Ya., Fuzik M. I. Elektromagnitnaya sovmestimost' radioelektronnykh sredstv [Electromagnetic compatibility of radio electronic means]. Kiev, Tekhnika Publ., 1983, 189 p.
15. Apollonskiy S. M., Gorskiy A. N. Raschety elektromagnitnykh poley [Calculations of electromagnetic fields]. Moscow, Marshrut Publ., 2006, 992 p.
16. Dobykin V. D., Kupriyanov A. I., Ponomarev V. G., Shus-tov L. N. Radioelektronnaya bor'ba. Silovoe podavlenie radioelektronnykh sistem [Electronic warfare. Power suppression of radio electronic systems]. Moscow, Vuzovskaya kniga Publ., 2007, 468 p.
17. Kravchenko V. I., Bolotov E. A., Letunova N. I. Radioelek-tronnye sredstva i moshchnye elektromagnitnye pomekhi [Radio electronic means and powerful electromagnetic interference]. Moscow, Radio i svyaz' Publ., 1987, 255 p.
Review
For citations:
Komnatnyy D.V. Analysis and prediction of the stability of train control systems to ultra-wideband electromagnetic pulses of intentional action. RUSSIAN RAILWAY SCIENCE JOURNAL. 2020;79(4):239-244. (In Russ.) https://doi.org/10.21780/2223-9731-2020-79-4-239-244