Modeling vector control of the asynchronous drive of electric rolling stock auxiliary machines
https://doi.org/10.21780/2223-9731-2022-81-1-23-30
Abstract
Introduction. The development of power semiconductor devices and technology served the basis for fundamentally new types of frequency-controlled electric drives with traction asynchronous motors on the rolling stock of electrified railways. Therefore, problems of theoretical and experimental study of the operating modes of the mentioned drives become actual. This article is a theme continuation of the asynchronous machines control on the AC locomotive, which was presented in no. 5 of Russian Railway Scientific Journal in 2021.
Materials and methods. For analysing the frequency converter operation, the authors used mathematical modeling methods, which allowed evaluating the motor operation in various modes without resorting to time-consuming full-scale tests. Recently, software packages for visual programming have been developed, aimed mainly at domestic users, which are not inferior in their capabilities to leading foreign counterparts. Among such software products is SimInTech software for modeling technical systems, developed by 3V Service. The software focuses on solving various applied problems, particularly, on modeling a vector control system for an asynchronous drive.
Results. The authors developed a mathematical model of an asynchronous drive of auxiliary machines of an electric locomotive in a rotating coordinate system d – q by the SimInTech application package and concerning the cross-impact influence of d and q control channels.
Discussion and conclusion. The developed complex of an asynchronous motor and a vector control system enable to work out various algorithms for improving the energy efficiency of the operation of asynchronous auxiliary machines of an electric locomotive by applying the proposed algorithm for choosing the optimal value of the rotor flux linkage. The presented vector control structure also enables to implement it on the basis of modern microcontrollers, helping to reduce programming time.
About the Authors
Yu. M. KulinichRussian Federation
Yuriy M. KULINICH, Dr. of Sci. (Engineering), Professor, Department “Railway Transport”
AuthorID: 360696
Khabarovsk
S. A. Shukharev
Russian Federation
Sergey A. SHUKHAREV, Cand. of Sci. (Engineering), Associate Professor, Department of “Railway Transport”
AuthorID: 889967
Khabarovsk
V. K. Dukhovnikov
Russian Federation
Vyacheslav K. DUHOVNIKOV, Cand. of Sci. (Engineering), Associate Professor, Department “Railway Transport”
AuthorID: 616256
Khabarovsk
A. V. Gulyaev
Russian Federation
Alexander V. GULYAEV, Associate Professor, Department “Electrical Engineering, Electronics and Electromechanics”
AuthorID: 718358
Khabarovsk
References
1. Kosmodamianskiy A. S., Vorob'ev V. I., Pugachev A. A. Sistemy skalyarnogo upravleniya tyagovym asinkhronnym dvigatelem [Systems of scalar control of a traction asynchronous motor]. Elektrotekhnika = Russian Electrical Engineering. 2016;(9):44–50. (In Russ.).
2. Klyuchnikov A. T., Turpak A. M. Bezdatchikovoe vektornoe upravlenie asinkhronnym dvigatelem pri raschete v kompleksnoy forme [Sensorless vector control of an asynchronous motor when calculating in a complex form]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Elektrotekhnika, informatsionnye tekhnologii, sistemy upravleniya = Bulletin of Perm National Research Polytechnic University. Electrotechnics, informational technologies, control systems. 2020;(33):160–176. (In Russ.).
3. Kosmodamianskiy A. S., Vorob'ev V. I., Pugachev A. A. Modelirovanie elektroprivoda s asinkhronnym dvigatelem v rezhime minimuma moshchnosti poter' [Modeling of an electric drive with an asynchronous motor in the mode of minimum power loss]. Elektrotekhnika = Russian Electrical Engineering. 2012;(12):26–31. (In Russ.).
4. Shonin O. B., Pron'ko V. S. Energosberegayushchie algoritmy chastotnogo upravleniya asinkhronnym privodom s utochneniem oblasti minimuma poter' na osnove metodov nechetkoy logiki [Energysaving algorithms for frequency control of an asynchronous drive with specification of the area of minimum losses based on fuzzy logic methods]. Zapiski Gornogo instituta = Journal of Mining Institute. 2016;(218):270–280. (In Russ.).
5. Kostenko M. P. Elektricheskie mashiny. Spetsial'naya chast' [Electrical Machines. Special part]. Leningrad: Gosenergoizdat Publ.; 1949. 708 p. (In Russ.).
6. Blaschke F. Das Prinzip der Feldorientierung, die Grundlage für die TransvektorRegelung von Drehfeldmaschinen (in German). Siemens-Zeitschrift. 1971;10(45):757–760.
7. Kulinich Yu. M., Shukharev S. A., Gulyaev A. V. Povyshenie energeticheskoy effektivnosti vspomogatel'nykh mashin elektrovoza peremennogo toka [Increasing the energy efficiency of auxiliary machines of AC electric locomotive]. Vestnik Nauchno-issledovatel'skogo instituta zheleznodorozhnogo transporta (Vestnik VNIIZhT) = Russian Railway Scientific Journal. 2021;80(5):276–284. https://doi.org/10.21780/222397312021805276284. (In Russ.).
8. Kalachev Yu. N. SimInTech: modelirovanie v elektroprivode [SimInTech: simulation in the electric drive]. Moscow: DMK Press; 2019. 98 p. (In Russ.).
9. Usol'tsev A. A. Chastotnoe upravlenie asinkhronnymi dvigatelyami: ucheb. posobie [Frequency control of asynchronous motors: Tutorial]. St. Petersburg: SPbGU ITMO Publ.; 2006. 94 p. (In Russ.).
10. Andryushchenko A. A., Babkov Yu. V., Zarifyan A. A., et al. Asinkhronnyy tyagovyy privod lokomotivov: ucheb. posobie [Asynchronous traction drive of locomotives: Tutorial]. Moscow: Ucheb.metod. tsentr po obrazovaniyu na zh.d. transporte [Educational and methodological center for education in railway transport] Publ.; 2013. 413 p. (In Russ.).
11. Pustovetov M. Modelirovanie asinkhronnykh vspomogatel'nykh mashin elektrovozov [Modeling of asynchronous auxiliary machines of electric locomotives]. Dusseldorf: LAP LAMBERT Academic Publishing; 2016. 177 p. (In Russ.).
12. Kulinich Yu. M. Elektronnaya preobrazovatel'naya tekhnika: ucheb. posobie [Electronic converting technology: Tutorial]. Moscow: Ucheb.metod. tsentr po obrazovaniyu na zh.d. transporte [Educational and methodological center for education in railway transport] Publ.; 2015. 204 p. (In Russ.).
13. Clarke E. Circuit Analysis of AC Power Systems. New York: Jonh Wiley & Sons; 1943. Vol. 1. 540 p.
14. Pradeep J., Devanathan R. Adoption of Park’s Transformation for Inverter Fed Drive. International Journal of Power Electronics and Drive System. 2015;5(3):366–373.
Review
For citations:
Kulinich Yu.M., Shukharev S.A., Dukhovnikov V.K., Gulyaev A.V. Modeling vector control of the asynchronous drive of electric rolling stock auxiliary machines. RUSSIAN RAILWAY SCIENCE JOURNAL. 2022;81(1):23-30. (In Russ.) https://doi.org/10.21780/2223-9731-2022-81-1-23-30