Validation of mathematical model of electrothermal calculation of DC catenary on the basis of scale model
https://doi.org/10.21780/2223-9731-2018-77-4-222-229
Abstract
About the Authors
A. V. ParaninRussian Federation
A. B. Batrashov
Russian Federation
References
1. Strategy of scientific and technical development of the holding “Russian Railways” for the period until 2020 and the prospect until 2025. “White Paper” of the JSC “Russian Railways”. Moscow, JSC “RZD” Publ., 2015, 68 p. (in Russ.)
2. Batrashov A. B. Sravnenie modeley tokoraspredeleniya v kontaktnykh podveskakh postoyannogo toka [Comparison of current distribution models in DC catenary]. Izvestiya Transsiba, 2017, no. 4, pp. 54 – 67.
3. Paranin A. V. Raschet raspredeleniya toka i temperatury v kontaktnoy podveske postoyannogo toka na osnove metoda konechnykh elementov [Calculation of the distribution of current and temperature in the DC catenary on the basis of the finite element method]. Vestnik VNIIZhT [Vestnik of the Railway Research Institute], 2015, no. 6, pp. 33 – 38.
4. Marskiy V. E., Kosarev A. B. Opredelenie nagruzochnoy sposobnosti kontaktnykh podvesok postoyannogo toka i ikh elementov. Sb. tr. VNIIZhT [Determination of the load capacity of DC catenary and its elements]. Novoe v khozyaystve elektrosnabzheniya [New in the electricity supply business. Proc. of the VNIIZhT]. Moscow, Intext Publ., 2003, pp. 123 – 127.
5. Raschet elektrotekhnicheskikh parametrov kontaktnoy seti. Skhemnye i konstruktivnye resheniya po kontaktnoy seti uchastka Moskva — Kazan' vysokoskorostnoy zheleznodorozhnoy magistrali Moskva — Kazan' — Ekaterinburg [Calculation of electrical parameters of the contact network. Schematic and constructive solutions for the contact network of the Moscow — Kazan section of the Moscow — Kazan — Ekaterinburg high-speed railway]. AO “Universal — kontaktnye seti” [JSC “Universal — contact networks”]. St. Petersburg, 2016, 105 p.
6. Bahrami M., Culham J. R., Yovanovich M. M. Modeling thermal contact resistance: a scale analysis approach. Journal of Heat Transfer, 2004, no. 126, pp. 896 – 905.
7. Shojaefard M., Ghaffarpour M., Noorpoor A. Thermal contact analysis using identification method. Heat Transfer Engineering, 2008, no. 29 (1), pp. 85 – 96.
8. Fieberg C., Kneer R. Determination of thermal contact resistance from transient temperature measurements. International Journal of Heat and Mass Transfer, 2008, no. 51, pp. 1017 – 1023.
9. Aronis C.G. [et el.]. A model regarding electrical contacts in advance degradation. International Journal of Modelling and Simulation, 2006, no. 26, pp. 169 – 173.
10. Karagiannopoulos C. G., Psomopoulos C. S., Bourkas P. D. A theoretic and experimental investigation in stationary electric contacts. Modelling and Simulation in Materials Science and Engineering, 2001, no. 9, pp. 181–192.
11. Incropera F. P. [et el.]. Fundamentals of Heat and Mass Transfer. 7th ed. NJ: John Wiley & Sons, 2011, 1050 p.
12. Bejan A. Convection Heat Transfer. 4th ed. NJ: John Wiley & Sons, 2013, 658 p.
13. Mikheev M. A., Mikheeva I. M. Osnovy teploperedachi [Basics of heat transfer]. Moscow, Energiya Publ., 1977, 344 p.
Review
For citations:
Paranin A.V., Batrashov A.B. Validation of mathematical model of electrothermal calculation of DC catenary on the basis of scale model. RUSSIAN RAILWAY SCIENCE JOURNAL. 2018;77(4):222-229. (In Russ.) https://doi.org/10.21780/2223-9731-2018-77-4-222-229